
1

Genetic Diversity: Analysis
Terminal / Command Line

Tuesday, June 17, 2025

Terminal ▷ Introduction

GDA | 17.06.2025 | JCW 2

Terminal ▷ Introduction

GDA | 17.06.2025 | JCW 3

1

5

1

Intermediate

Novice

Beginner

Expert

Terminal ▷ Introduction

GDA | 17.06.2025 | JCW
4

Terminal ▷ Introduction

GDA | 17.06.2025 | JCW
5

Get Table
curl -O https://www.gdc-docs.ethz.ch/GeneticDiversityAnalysis/GDA/data/Table.txt

Show Table
cat Table.txt

SID Group Size CC Project
T1 a M 1 P777
T2 a M 1 P777
T3 a S 3 P777
T4 a S 5 P777
T5 a XL 5 P777
T6 b M 1 P777
T7 b M 1 P777
T8 b S 1 P777
T9 b XL 1 P777
T10 b XS 3 P777
T11 c M 1 P777
T12 c M 2 P777
T13 c M 2 P777
T14 c S 4 P777
T15 c S 5 P777

Terminal ▷ Introduction

GDA | 17.06.2025 | JCW

Transform Table
awk '{
 if(NR==1) print $1,$4,$2,$5; # exclude header line
 else if(length($1)>2) print $1,$4,toupper($2),"p779"; # change project number
 else print "T0"substr($1,2,3),$4,toupper($2),"p779" # rename sample < 10
}' Table.txt > Table_new.txt

Show NEW Table
cat Table_new.txt

SID CC Group Project
T01 1 A p779
T02 1 A p779
T03 3 A p779
T04 5 A p779
T05 5 A p779
T06 1 B p779
T07 1 B p779
T08 1 B p779
T09 1 B p779
T10 3 B p779
T11 1 C p779
T12 2 C p779
T13 2 C p779
T14 4 C p779
T15 5 C p779

6

Terminal ▷ Introduction

GDA | 17.06.2025 | JCW
7

Get Table
curl --verbose -O https://gdc-docs.ethz.ch/GeneticDiversityAnalysis/GDA/scripts/reformat_table.sh

Make the script executable
chmod a+x reformat_table.sh

run the script but make sure the Table.txt file is in the same directory
./reformat_table.sh Table.txt

Show NEW Table

cat Table_new.txt
SID CC Group Project
T01 1 A p779
T02 1 A p779
T03 3 A p779
T04 5 A p779
T05 5 A p779
T06 1 B p779
T07 1 B p779
T08 1 B p779
T09 1 B p779
T10 3 B p779
T11 1 C p779
T12 2 C p779
T13 2 C p779
T14 4 C p779
T15 5 C p779

Alternative solution providing a bash script:

Terminal ▷ Introduction

GDA | 17.06.2025 | JCW
8

Different OSs and Versions

Mac Linux Windows

Terminal ▷ Introduction

GDA | 17.06.2025 | JCW
9

Terminal ▷ Introduction

GDA | 17.06.2025 | JCW
10

A graphical user interface (GUI) - often pronounced
gooey - an interface that allows the user (you) to interact
with programs in more ways than typing.

GUIs are nice but limited. Don’t be afraid to use the terminal!

Terminal ▷ Introduction

GDA | 17.06.2025 | JCW
11

GUIs were introduced in reaction to the steep learning curve of command-
line interfaces (CLI), which require commands to be typed on the

keyboard. Since the commands available in command line interfaces can

be numerous, complicated operations can be completed using a short

sequence of words and symbols. This allows for greater efficiency,
productivity once many commands are learned, and better
reproducibility.

“Where there is a shell, there is a way.”

Terminal ▷ Introduction

GDA | 17.06.2025 | JCW
12

Once upon a time, computers spoke only in cryptic spells typed by brave command-line wizards. These

early users, armed with nothing but a blinking cursor and pure willpower, tamed machines by uttering

arcane incantations like grep, awk, and chmod 775. It was powerful—but only if you had the patience

of a monk and the memory of an elephant.

Then came the Graphical User Interface (GUI), a shiny new toy meant to rescue humanity from mistyping

rm -rf / and accidentally deleting the universe. GUIs introduced buttons, windows, and icons - tools

for the rest of us, who prefer dragging and clicking over memorizing which flag does what in a 12-word

command.

Yet, ironically, while GUIs made computers more approachable, the command line didn’t go away. Why?

Because once you master its secret language, you can perform sorcery at lightning speed: batch-

renaming files, deploying software, or bending entire servers to your will - often in just a single line. It’s

like riding a bicycle that can also fly, once you stop falling off.

So yes, GUIs are friendly. But CLIs? They're fast, efficient, and reproducible. Just... maybe keep a cheat

sheet handy.

Terminal ▷ Introduction

GDA | 17.06.2025 | JCW
13

XShell - Terminal
Shell is a UNIX term for the interactive user interface with an

operating system. The shell is the layer of programming that

understands and executes the commands a user enters.

Bourne-Shell (sh)

Korn-Shell (ksh)

C-Shell (csh)

TC-Shell (tcsh)

Bourne-Again-Shell (bash)

Debian Almquist Shell (dash)

Z-Shell (zsh)

A-Shell (ash)

PowerShell / cmd.exe

What
 do

I ha
ve?

$> e
cho

${SH
ELL}

Terminal ▷ Introduction

GDA | 17.06.2025 | JCW
14

Bash > zcat file.gz

Zsh > zcat < file.gz

Bash > sed -i 's/d/D/2' file.txt

Zsh > sed -i"" "s/d/D/2" file.txt

Terminal ▷ Introduction

GDA | 17.06.2025 | JCW
15

echo ${SHELL}
#which zsh
#which bash

Bash > Zsh
chsh -s /bin/bash

Zsh > Bash
chsh -s /bin/zsh

Change Shell

Which one is better? Both shells will get the job
done. The bash is a bit outdated (version 3.2 -
2006). Many of the conveniences provided by
zsh can be made available in bash. It seems zsh
is more helpful to newer shell user.

Terminal ▷ Introduction

GDA | 17.06.2025 | JCW
16

/

usersetc… tmp …bin var

MEUserA UserC

GDATMP Privat

eBooks MusicSSHNGS

root ▻

home directories ▻

directories ▻

sub-directories ▻

Terminal ▷ Introduction

GDA | 17.06.2025 | JCW
17

> ls -lh

Command

Options / Arguments

Prompt

Command - Line

Terminal ▷ Introduction

GDA | 17.06.2025 | JCW
18

> info <command>

> info ls

> man <command>

> man ls

Built-in Help

* press Q to leave info or manual

Terminal ▷ Introduction

GDA | 17.06.2025 | JCW
19

Terminal ▷ Introduction

GDA | 17.06.2025 | JCW
20

/

useretc… tmp …bin var

MEUserA UserC

> pwd
/home/ME

pwd - print name of current/working directory

> pwd
/home/ME
> cd ${HOME}
> pwd
/home/ME
> cd ~
> pwd
/home/ME
> cd
/home/ME

Terminal ▷ Introduction

GDA | 17.06.2025 | JCW
21

mkdir - creating/making directories

> mkdir ME/GDA
> mkdir ME/GDA/Terminal

> mkdir -p ME/GDA/Terminal

/

homeetc… tmp …bin var

MEUserA UserC

GDA

Terminal

Alternatively, use option p to create diretories and sub-directories

Terminal ▷ Introduction

GDA | 17.06.2025 | JCW
22

> cd GDA

> cd terminal

/

homeetc… tmp …bin var

MEUserA UserC

GDA

Terminal

> cd GDA/terminal

Alternative

cd - change directory

Terminal ▷ Introduction

GDA | 17.06.2025 | JCW
23

> cd ..

> cd ..

/

homeetc… tmp …bin var

MEUserA UserC

GDA

Terminal > cd

> cd ${HOME}

> cd ~

> cd /home/Me/

ways to go home

Terminal ▷ Introduction

GDA | 17.06.2025 | JCW
24

Local
Software
Management

Software
Dependencies

Parallel
Versions

Terminal ▷ Introduction

GDA | 17.06.2025 | JCW
25

Package, dependency and environment management for any language—

Python, R, Ruby, Lua, Scala, Java, JavaScript, C/ C++, FORTRAN. Conda as a

package manager helps you find and install packages. If you need a package

that requires a different version of Python, you do not need to switch to a

different environment manager, because conda is also an environment

manager. With just a few commands, you can set up a totally separate

environment to run that different version of Python, while continuing to run

your usual version of Python in your normal environment.

Terminal ▷ Introduction

GDA | 17.06.2025 | JCW
26

Bioconda is a channel for the conda package manager specialising in

bioinformatics software. The conda package manager makes installing software

a vastly more streamlined process. Conda is a combination of other package

managers you may have encountered, such as pip, CPAN, CRAN,

Bioconductor, apt-get, and homebrew. Conda is both language- and OS-

agnostic, and can be used to install C/C++, Fortran, Go, R, Python, Java etc

programs on Linux, Mac OSX, and Windows.

Terminal ▷ Introduction

GDA | 17.06.2025 | JCW
27

python --version
Python 2.7.15
bwa
-bash: bwa: command not found
blast -help
-bash: blast: command not found

conda info --envs
source activate aligners
conda info --envs
python --version
Python 3.6.7
bwa
blastn -help

Terminal ▷ Introduction

GDA | 17.06.2025 | JCW
28

Containerisation is a technique used in software development and deployment that allows applications and
their dependencies to be packaged together into self-contained units called containers. Containers
provide a lightweight and isolated runtime environment that can run consistently across different computing
environments, such as laptops, servers, or cloud platforms.

1. Portability: Containers are portable and can be
deployed across different systems without
modifications. They encapsulate the application and
its dependencies, ensuring consistent behaviour
regardless of the underlying infrastructure.

2. Scalability: Containers enable applications to be
easily scaled horizontally by running multiple
instances of the same container across a cluster of
machines. This allows for efficient resource utilisation
and the ability to handle increased workload
demands.

3. Efficiency: Containers share the host operating
system's kernel and only require the necessary
dependencies, making them lightweight and
resource-efficient compared to traditional virtual
machines.

4. Isolation: Containers provide a level of isolation
between the application and the host operating
system, as well as between different containers. This
isolation helps prevent conflicts between
applications and improves security by limiting the
impact of any potential vulnerabilities.

5. Rapid deployment: Containers simplify the
deployment process by providing a consistent
environment. They can be quickly started, stopped,
and updated, allowing for fast and efficient
application deployment and rollbacks.

Terminal ▷ Introduction

GDA | 17.06.2025 | JCW
29

Singularity (Apptainer) is an open-source containerisation platform that focuses on providing secure and
reproducible environments for scientific and high-performance computing (HPC) workloads. It was
developed specifically to address the challenges faced by researchers and scientists when working with
complex software stacks and specialized computing resources.

1. Reproducibility: Singularity enables researchers to
create and distribute containers that encapsulate
their entire software stack, including the application,
libraries, and dependencies. This ensures that the
environment remains consistent and reproducible
across different systems.

2. Compatibility with HPC: Singularity is designed to
seamlessly integrate with HPC clusters and resource
managers commonly used in scientific computing. It
allows users to leverage specialised hardware
resources, such as GPUs and high-performance
interconnects, while still providing isolation and
security.

3. Security and user isolation: Singularity employs a
security model that focuses on user isolation and
containment. It ensures that users can run containers
securely without requiring escalated privileges,
making it suitable for multi-user HPC environments.

4. Mobility: Singularity containers are portable and can
be easily shared, distributed, and run on different
systems, including local workstations, clusters, and
cloud platforms.

5. Interoperability: Singularity supports a wide range
of container image formats, including Docker,
making it possible to leverage existing container
images and workflows.

30

EXTRAS

Terminal ▷ Introduction

GDA | 17.06.2025 | JCW
31

#!/usr/bin/perl -w
use strict;

my $input_fasta=$ARGV[0];
open(IN,"<$input_fasta") || die ("Error opening $input_fasta $!");

my $line = <IN>;
print $line;

while ($line = <IN>)
{
 chomp $line;
 if ($line=~m/^>gi/) { print "\n",$line,"\n"; }
 else { print $line; }
}

print "\n";

perl fa2one.pl multiple.fa > one.fa

Terminal ▷ Introduction

GDA | 17.06.2025 | JCW
32

#!/usr/bin/perl -w
use strict;

Perl script to reformat fasta files
Usage: perl fa2one.pl multiple.fa > one.fa

my $input_fasta=$ARGV[0];
open(IN,"<$input_fasta") || die ("Error opening $input_fasta $!");

my $line = <IN>;
print $line;

while ($line = <IN>)
{
 chomp $line;
 if ($line=~m/^>gi/) { print "\n",$line,"\n"; }
 else { print $line; }
}

print "\n";

perl fa2one.pl multiple.fa > one.fa

↙ limiting factor

