```
CAIGCAIGCAIGCAIGCAIGCA
CATGCATGCATGCATGCAT
 "GCATGCATGCATGGCATGCA
   GCATGCATGCATGCA
   CATGCATGCATGCATGCA*
   TGCATGCACTGCATGCATG
      ATGCCATGCATGCAT, LATGCATGLAT
       TGCATGCATGCATGCATGCATG
       SCATGCAGGTTGCATGCATGCATG
        IGCATGCATGCATGCATGCATGCATGCATGCATGCATG
     AGTTGCATGCATGC*TC
                     TOTAL CATGCATGCATGCATGCAT
                        ATECATGCATGCAATGCAT
              JCA
                             "CATGCATGCA"
                             [ATGCATAA/
                            GCATGCAT"
                                SCA
```


Genetic Diversity: Analysis

STA MEMASTE ACCESS

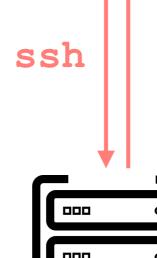
Tuesday, June 17, 2025

Secure Shell (SSH) is a cryptographic network protocol for operating network services securely over an unsecured network. Typical applications include remote command-line, login, and remote command execution, but any network service can be secured with SSH.

Source: Wikipedia

SSH is like whispering commands to your server through an encrypted tunnel, so no one else can eavesdrop. It's a cryptographic network protocol that lets you log in, execute commands, and control remote machines without handing out an open invitation to hackers. While it's best known for remote command-line access, SSH can wrap its security blanket around just about any network service. Basically, if your connection feels like sending a postcard, SSH turns it into a locked briefcase with lasers.

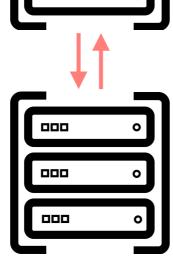
Local



Model Identifier: MacBookPro

Number of Processors: 1 (M1 Pro)

Total Number of Cores: 8


Memory: 32 GB

Abacus (Compute-Server)

```
lscpu; free -m
# Architecture: x86_64
# Model name: Intel(R) Xeon
# CPU(s): 48
# Mem: 775 GB
```

Remote

Box (Data/Backup-Server)


```
> ssh guest99@gdc-vserver.ethz.ch
# guest99@gdc-vserver.ethz.ch's password:
> pwd
# /home/guest99
> users
jwalser nzemp guest99 guest03
```


ssh guest99@gdc-vserver.ethz.ch

Genetic
Diversity
Centre

```
## Monitoring server activity:
> top # press Q to leave top
```

top - 15:31:08 up 198 days, 5:44, 11 users, load average: 2.28, 2.95, 2.74
Tasks: 4418 total, 3 running, 4414 sleeping, 1 stopped, 0 zombie
Cpu(s): 1.4%us, 0.1%sy, 0.0%ni, 98.5%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 926346512k total, 915660416k used, 10686096k free, 1139248k buffers
Swap: 41943036k total, 3202716k used, 38740320k free, 858950540k cached

PID	USER	PR	NI	VIRT	RES	SHR	S	%CPU	%MEM	TIME+	COMMAND
101909	cstritt	20	0	145m	12 m	2216	R	99.5	0.0	1670:03	python2
101912	cstritt	20	0	145m	12 m	2216	R	99.1	0.0	1670:03	python2
47027	smrtanal	20	0	85.2g	1.8g	7224	S	39.5	0.2	77856:07	java
61899	jwalser	20	0	18404	4652	948	R	4.7	0.0	0:01.10	top
45866	smrtanal	20	0	65.9g	8.3g	8548	S	0.6	0.9	1050:29	java
525	root	20	0	0	0	0	S	0.3	0.0	1:33.86	ksoftirqd/130
649	root	20	0	0	0	0	S	0.3	0.0	49:55.41	events/6
683	root	20	0	0	0	0	S	0.3	0.0	123:26.83	events/40
8717	root	20	0	0	0	0	S	0.3	0.0	525:50.39	kondemand/41
8826	root	20	0	0	0	0	S	0.3	0.0	389:55.32	kondemand/150
61910	root	20	0	98.4m	3908	2944	S	0.3	0.0	0:00.02	sshd
1	root	20	0	19368	1136	916	S	0.0	0.0	66:56.88	init
2	root	20	0	0	0	0	S	0.0	0.0	0:18.69	kthreadd
3	root	RT	0	0	0	0	S	0.0	0.0	3613:39	migration/0
4	root	20	0	0	0	0	S	0.0	0.0	3:51.22	ksoftirqd/0
5	root	RT	0	0	0	0	S	0.0	0.0	0:00.00	stopper/0
6	root	RT	0	0	0	0	S	0.0	0.0	128:44.45	watchdog/0
7	root	RT	0	0	0	0	S	0.0	0.0	2585:53	migration/1
8	root	RT	0	0	0	0	S	0.0	0.0	0:00.00	stopper/1
9	root	20	0	0	0	0	S	0.0	0.0		ksoftirqd/1
10	root	RT	0	0	0	0	S	0.0	0.0	105:29.73	watchdog/1
11	root	RT	0	0	0	0	S	0.0	0.0	2263:28	migration/2
12	root	RT	0	0	0	0	S	0.0	0.0	0:00.00	stopper/2

CPU state percentages

us: user

sy: system

ni: nice

wa: IO-wait

hi: hardware interrupts

si: software interrupts

PID : Process ID

USER: USER

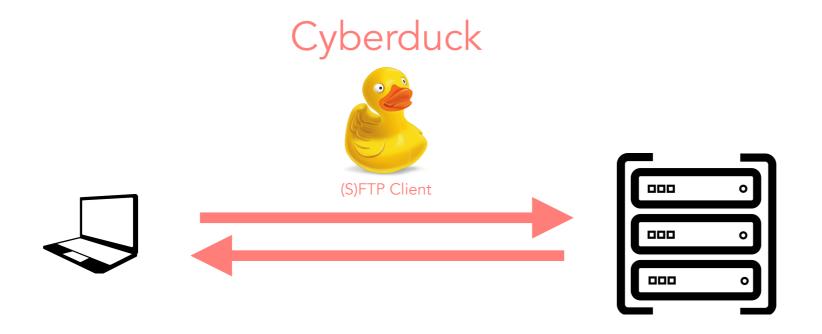
%CPU: 100% == 1 CPU

%MEM: Memory Usage

CND : Process

Diversity
Centre

File Exchange


```
# Create a text files
> echo "Let me see the world" > go.txt
# Send the file to the server
> scp go.txt guest01@gdc-vserver.ethz.ch:/home/guest01
```



```
# Get the file back but rename it
> scp guest01@gdc-vserver.ethz.ch:/home/guest01/go.txt back.txt
> cat back.txt
```

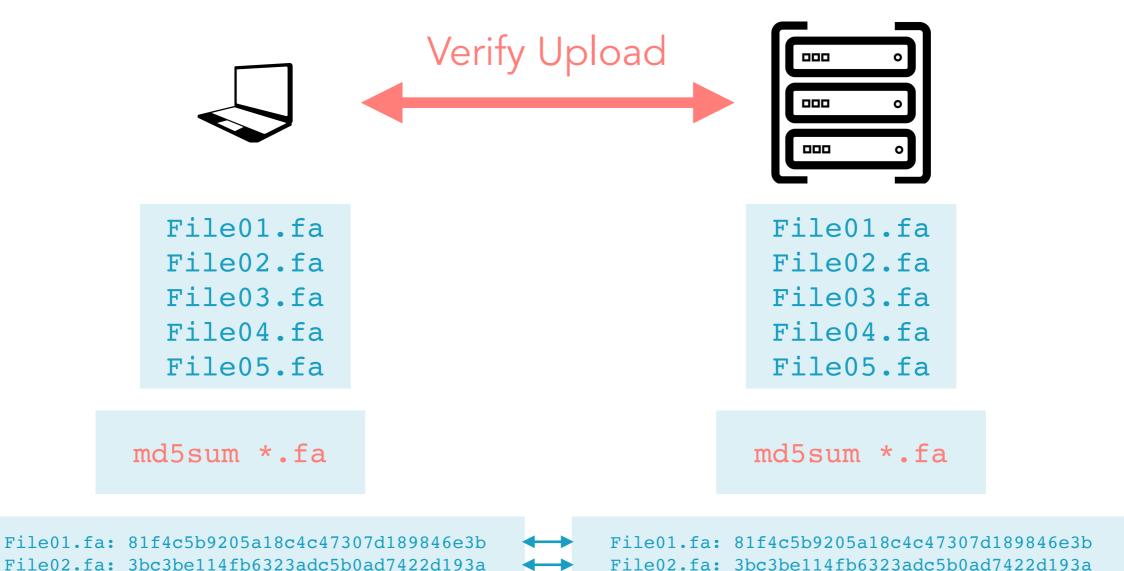

A convenient way to upload or download (exchange) files from or to a remote server is via a (S)FTP client like Cyberduck.

Diversity Centre

```
File01.fa
File02.fa
File03.fa
File04.fa
File05.fa
```

```
scp *.fa guest01@gdc-vserver.ethz.ch:/home/guest01
```

```
zip Files.fa.zip *.fa
scp *.zip guest01@gdc-vserver.ethz.ch:/home/guest01
```


File03.fa: 18dfa68a1bdd6e4329ab2d7227687d91

File04.fa: 5561612324670105ad9b52d88b37ede6

File05.fa: b45b0e608ef277ed8b530408d111efa5

Diversity Centre

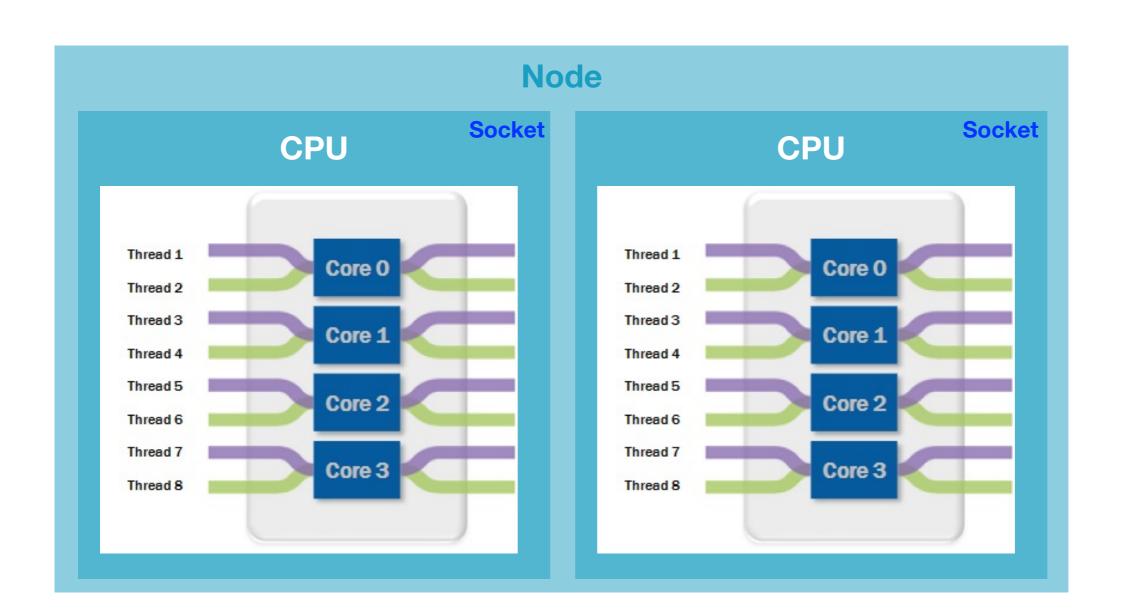
File03.fa: e355950460780d84ca94a28885cb05e8

File04.fa: 5561612324670105ad9b52d88b37ede6

File05.fa: b45b0e608ef277ed8b530408d111efa5

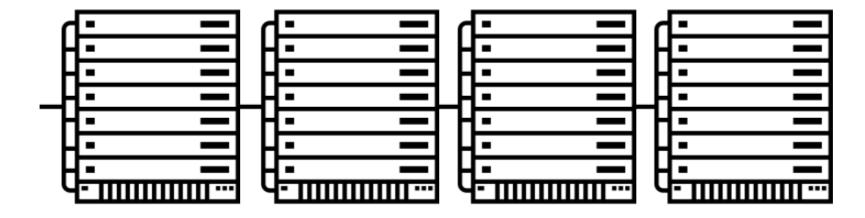
md5sum [option] [file(s)]

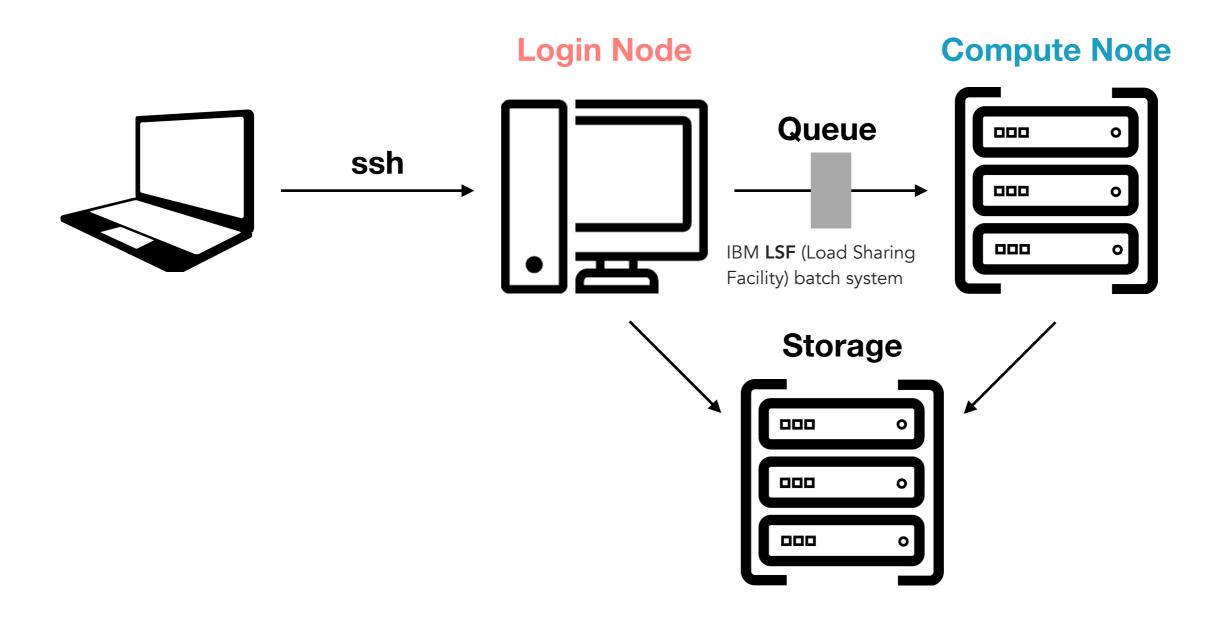
Compute or check 128-bit MD5 checksums is used to that no change has been made to a file, e.g. ensure that a file was not corrupted during transfer. With no files or - specified, read from standard input. The exit status is 0 for success and nonzero for failure.



A Few important terms:

- Compute node: Currently most compute node have two sockets, each with a single CPU, volatile working memory (RAM), a hard drive, typically small, and only used to store temporary files, and a network card.
- **CPU**: Central Processing Unit, the chip that performs the actual computation in a compute node. A modern CPU is composed of numerous cores, typically 8 or 10. It has also several cache levels that help in data reuse.
- **Core**: part of a modern CPU. A core is capable of running processes, and has its own processing logic and floating point unit. Each core has its own level 1 and level 2 cache for data and instructions. Cores share last level cache.
- **Threads**: a process can perform multiple computations, i.e., program flows, concurrently. In scientific applications, threads typically process their own subset of data, or a subset of loop iterations.


Centre



Diversit Centre

Euler II

Euler II contains **768** compute nodes of a newer generation — BL460c Gen9 ☑ —, each equipped with:

- Between 64 and 512 GB of DDR4 memory clocked at 2133 MHz (32 x 512 GB; 32 x 256 GB; 32 x 128 GB; 672 x 64 GB)

Euler II also contains 4 very large memory nodes — Hewlett-Packard DL580 Gen9 № —, each equipped with:

- Four 16-core Intel Xeon E7-8867v3₺ processors (2.5 GHz)
- 3072 GB of DDR4 memory clocked at 2133 MHz

Euler III

Euler III contains 1215 compute nodes — Hewlett-Packard m710x ☑ —, each equipped with:

- A quad-core Intel Xeon E3-1585Lv5

 processor (3.0-3.7 GHz)
- 32 GB of DDR4 memory clocked at 2133 MHz

All these nodes are connected to the rest of the cluster via 10G/40G Ethernet.

Euler IV

Euler IV contains 288 high-performance nodes — Hewlett-Packard XL230k Gen10 № —, each equipped with:

- Two 18-core Intel Xeon Gold 6150 ₽ processors (2.7-3.7 GHz)
- 192 GB of DDR4 memory clocked at 2666 MHz

All these nodes are connected together via a new 100Gb/s InfiniBand EDR network.

Euler V

Euler V contains 352 compute nodes — Hewlett-Packard BL460c Gen10 —, each equipped with:

- Two 12-core Intel Xeon Gold 5118 d processors (2.3 GHz nominal, 3.2 GHz peak)
- 96 GB of DDR4 memory clocked at 2400 MHz

https://scicomp.ethz.ch/wiki/Euler

Basic job submission

Submission script

```
#!/bin/bash
#BSUB -J "MyScript"  ## Job Title
#BSUB -n 10  ## Number of Cores
#BSUB -R "rusage[mem=2048]" ## Memory Request
#BSUB -W 2:00  ## Running Time

## Load environment
module load gcc/4.8.2 gdc perl/5.18.4

## ...
```


Diversity Centre

Job monitoring

[leonhard@euler08 ~]\$ bbjobs 31989961									
Job information									
Job ID	: 31989961								
Status	: RUNNING								
Running on node	: e1268								
User	: leonhard								
Queue	: normal.4h								
Command	: compute_pq.py								
Working directory	: \$HOME/testruns								
Requested resources									
Requested cores	: 1								
Requested memory	: 1024 MB per core								
Requested scratch	: not specified								
Dependency	: -								
Job history									
Submitted at	: 08:45 2016-11-15								
Started at	: 08:48 2016-11-15								
Queue wait time	: 140 sec								
Resource usage									
Updated at	: 08:48 2016-11-15								
Wall-clock	: 34 sec								
Tasks	: 4								
Total CPU time	: 5 sec								
CPU utilization	: 80.0 %								
Sys/Kernel time	: 0.0 %								
Total resident memory	: 2 MB								
Resident memory utilization	: 0.2 %								

A Few important terms:

- HPC cluster: relatively tightly coupled collection of compute nodes. Access to the cluster is provided through a login node. A resource manager and scheduler provide the logic to schedule jobs efficiently on the cluster.
- Compute node: an individual computer, part of an HPC cluster. Currently most compute node have two sockets, each with a single CPU, volatile working memory (RAM), a hard drive, typically small, and only used to store temporary files, and a network card.
- **CPU**: Central Processing Unit, the chip that performs the actual computation in a compute node. A modern CPU is composed of numerous cores, typically 8 or 10. It has also several cache levels that help in data reuse.
- **Core**: part of a modern CPU. A core is capable of running processes, and has its own processing logic and floating point unit. Each core has its own level 1 and level 2 cache for data and instructions. Cores share last level cache.
- **Threads**: a process can perform multiple computations, i.e., program flows, concurrently. In scientific applications, threads typically process their own subset of data, or a subset of loop iterations.