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Archaeogenetics has revolutionised the study of ancient diseases by providing
direct genetic evidence of past infections such as plague (Yersinia pestis),
tuberculosis (Mycobacterium tuberculosis) or hepatitis B virus (HBV), allowing
researchers to trace the evolution and spread of pathogens through time. These
discoveries not only improve our understanding of historical diseases, but also
provide valuable insights into the co-evolution of humans and pathogens.

% Why do we have historical evidence going back thousands of

years for diseases like the plague, tuberculosis, or hepatitis
but not influenza?

5 GDA | 24.06.2025 | JCW
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Stability and Preservation of Ancient DNA vs. RNA

DNA is chemically more stable than RNA, making it more likely to be
preserved in ancient remains under favourable conditions.

Due to RNA's instability, direct evidence of ancient RNA viruses is
rare. Influenza, being an RNA virus, is particularly challenging to
study in ancient contexts because its genetic material degrades
more quickly than DNA.

GDA | 24.06.2025 | JCW
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Nearly 5,000 years ago, a 20-year-old woman was buried in a tomb
in Sweden - one of Europe’s early farmers, dead in her prime. Now,
researchers have discovered what killed her: Yersinia pestis, the
bacterium that causes plague. The sample is one of the oldest ever
found and belongs to a previously unknown branch of the Y. pestis
evolutionary tree. This newly discovered strain may have contributed
to the collapse of large Stone Age settlements across Europe,
potentially triggering the world’s first pandemic, according to the
research team. However, other scientists argue that there isn't yet

enough evidence to confirm this scenario.
Science News Archaeology 2018
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Localisation and Preservation in Archaeological Remains

Preservation - Bacteria responsible for systemic infections, such as those that
cause plague (Yersinia pestis) or tuberculosis (Mycobacterium tuberculosis),
are often found in the bloodstream. This allows them to settle in hard tissues
such as bones and teeth, which are better preserved over time.

Soft tissue localisation - Many viruses cause localised infections, mainly in
soft tissues, which decompose more rapidly after death. For example,
influenza typically affects the respiratory tract, and hepatitis primarily affects
the liver.

GDA | 24.06.2025 | JCW
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MPS

DNA-}-}S‘e

DNA-Seq

quences
Reads

Genome Analysis
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MPS

Sequences
> Reads

DNA =

DNA-Seq
MPS
Sequences
RNA = 5 gea e
RNA-Seq

MPS == Massive Parallel Sequencing

Genome Analysis

Transcriptome Analysis
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Possible
Attenuation

Splicing
and 3’-end
cleavage

Nuclear
export

Spatial
localization
in cytoplasm

Possible
RNA editing

Start
translation

*—b

Possible
translational
recogding

Possible RNA
stabilization

ﬁ

Polypeptide

11

RNA
transcript
aborts

Nonfunctional
mRNA
sequences

Retention in
nucleus

Mislocalization

Degradation of
nonsensical
transcript

Translation
blocked

RNA
degraded

Polypeptide

Prevention of pr'emature folding
Localization within cell
Cleavage of pre-/post-sequence
Covalent modification

(e.g. glycosylation, S-S)
Assemby with other subunits
Secretion
Phosphorylation
Intein splicing
Isomerization
Aggregation
Degradation

Proteosomal

Non-protsosomal

Functional Protein

Feder & Walser (2005) The biological limitations of transcriptomics in elucidating stress and stress
responses. Journal of Evolutionary Biology.
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NCRNA, nmRNA, sRNA, smnRNA, tRNA, mRNA, pcRNA, rRNA,
5S rRNA, 5.8S rRNA, SSU rRNA, LSU rRNA, NoRC RNA, pRNA,
6S RNA, SsrS RNA, aRNA, asRNA, asmiRNA, cis-NAT, crRNA,
tracrRNA, CRISPR RNA, DD RNA, diRNA, dsRNA, endo-siRNA,
eXRNA, gRNA, hc-siRNA, hcsiRNA, hnRNA, RNAI, lincRNA,
INcCRNA, miRNA, mrpRNA, nat-siRNA, natsiRNA, OxyS RNA,
PIRNA, giRNA, rasiRNA, RNase MRP, RNase P, scaRNA, schRNA,
SCRNA, scRNA, SgrS RNA, shRNA, siRNA, SL RNA, SmY RNA,
SNORNA, snRNA, snRNP, SRP RNA, ssRNA, stRNA, tasiRNA,
tmRNA, uRNA, VRNA, VvtRNA, Xist RNA, Y RNA, NATs, pre-
MRNA, circRNA, msRNA, cfRNA, ...

GDA | 24.06.2025 | JCW
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MPS 2 mRNA
RNA D> p Seauences g iy
S =2 circRNA

MPS

S
RNA =P > eg:::;es 3 mRNA

RNA library enrichment strategies:
> Size selection — enriching RNA fragments within a specific size range

> Removal of non-target RNA (e.g., ribosomal RNA depletion)
> Targeted enrichment — capturing specific transcripts or regions of interest

13

GOC
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Every cleaning step improves RNA quality — but at a cost.

total enriched

RNA RNA RNA RNA RNA

In most RNA-seq workflows, cleanup steps are essential to remove contaminants that
could interfere with accurate signal detection. The aim is not to balance purity and
quantity, but to achieve the level of purity required for reliable downstream analysis —
even if this results in some loss of material. To compensate, it is important to begin with

a sufficiently high amount of input RNA.
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Quantity and Quality of RNA

In RNA-seqg experiments, the quality of your data depends heavily on the quality of
your starting material. If you start with poor-quality RNA—degraded samples,
contamination, or insufficient input—no amount of fancy sequencing or analysis can
fix those problems. This is the principle of “garbage in, garbage out”: bad input

leads to unreliable results. To get meaningful data, you must ensure good RNA

quality and proper sample preparation from the very beginning.

gDNA RNA analysis by agarose gel electrophoresis. Lanes 1 and 2 are
examples of intact RNA with a 285:18S rRNA ratio of approximately
285 rRNA 2:1. Lane 3 is an example of degraded RNA with RNA smeaing
below the 28S and 18S RNA bands. Lane 4 is an example of RNA
18S rRNA degradation resulting in the loss of the 285 rRNA band and an
accumulation of degraded RNA near the bottom of the gel. Lane 5
is an example of RNA with significant genomic DNA (gDNA)

degraded contamination.
RNA Source: Wieczorek et al. Promega Corporation

contamination

GDA | 24.06.2025 | JCW
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@ DNA
RNA =» Total RNA

MRNA, polyA RNA, polysomal RNA, tRNA,
ribosomal RNA, lincRNA, miRNA, piRNA, siRNA,
SRP RNA, tmRNA, snRNA, snoRNA, SmY RNA,
scaRNA, gRNA, aRNA, crRNA, tasiRNA, rasiRNA,
/SK RNA
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Ribosomal RNA Depletion for Efficient ',
Use of RNA-Seq Capacity >

Dominic O’Neil,! Heike Glowatz,! and Martin Schlumpberger!
!Qiagen, Hilden, Germany

ABSTRACT

Ribosomal RNA (rRNA) is the most highly abundant component of RNA, comprising the
majority (>80% to 90%) of the molecules present in a total RNA sample. Depletion of
this rRNA fraction is desirable prior to performing an RNA-seq reaction, so that sequenc-
ing capacity can be focused on more informative parts of the transcriptome. This unit
describes an rRNA depletion method based on selective hybridization of oligonucleotides
torRNA, recognition with a hybrid-specific antibody, and removal of the antibody-hybrid
complex on magnetic beads. Curr. Protoc. Mol. Biol. 103:4.19.1-4.19.8. © 2013 by John
Wiley & Sons, Inc.

Keywords: rRNA depletion e sample preparation ¢ RNA-seq e next generation
sequencing e transcriptome
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For transcriptome-based studies, RNA-seq libraries are
generated by the synthesis of double stranded cDNA followed by
the addition of sequencing adapters. This method however, does
not retain any information about the DNA strand from which the
RNA was transcribed. It is often desirable to create libraries
that retain the strand orientation of the original RNA
targets. For example, in some cases transcription creates anti-
sense RNA constructs that may play a role in regulating gene
expression.

Head et al. (2014). Library construction for next-generation sequencing: Overviews and challenges.
BioTechniques, 56(2).
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RNA-Seq is a comprehensive high-throughput sequencing approach
for the quantitative and qualitative analysis of transcriptomes of
model and non-model organisms.
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total RNA
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(cDNA)
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Library Prep
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Sequencing

\Y

Quality Control
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(Mapping)
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Counts

\Y

Analysis
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DEG-Analysis

Treatment A Treatment B
A1 A2 A3 B1 B2 B3

Time-Serie

Quantitative RNA-Seq

Gen A
Gen B
Gen C

GOC
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The Idea behind DEGs oo E

« MRNA Isolation ‘ R
« cDNA Bl Sample 1 Sample 2
» Library prep

| R
« Sequencing e

N
E _:__:_ Reads
» Mapping Reference Reference
5 9 10 3

5 9

« Counts Gene A: = 0.5 fold change  Gene B: B = 3 fold change
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SCIENCE ADVANCES | RESEARCH ARTICLE

EVOLUTIONARY BIOLOGY

The genetic mechanism of selfishness and altruism
in parent-offspring coadaptation

Min Wu'*, Jean-Claude Walser?, Lei Sun®', Mathias Kolliker'**

The social bond between parents and offspring is characterized by coadaptation and balance between altruistic
and selfish tendencies. However, its underlying genetic mechanism remains poorly understood. Using transcriptomic
screens in the subsocial European earwig, Forficula auricularia, we found the expression of more than 1600 genes
associated with experimentally manipulated parenting. We identified two genes, Th and Peblll, each showing
evidence of differential coexpression between treatments in mothers and their offspring. In vivo RNAi experiments
confirmed direct and indirect genetic effects of Th and Peblll on behavior and fitness, including maternal food
provisioning and reproduction, and offspring development and survival. The direction of the effects consistently
indicated a reciprocally altruistic function for Th and a reciprocally selfish function for Peblll. Further metabolic
pathway analyses suggested roles for Th-restricted endogenous dopaminergic reward, Peblll-mediated
chemical communication and a link to insulin signaling, juvenile hormone, and vitellogenin in parent-offspring
coadaptation and social evolution.
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RNA interference (RNAI) is a post-transcriptional process triggered by the introduction of <
double-stranded RNA (dsRNA) which leads to gene silencing in a sequence-specific manner.
NUCLEUS aTortAsM RNAi-mediated gene silencing in mammals using
)”b;rrr shRNAs
A S (D Plasmid-expressed short hairpin RNA (shRNA) requires the activity

@ Ago2 (Argonaute 2) is recruited by TRBP, that forms a dimer with
Dicer, and then receives the shRNA.

@ The shRNA is cleaved in one step by Dicer generating a 19-23 nt
duplex siRNA with 2 nt 3’ overhangs.

@ After identification of the “guide strand” in the siRNA duplex, the
“passenger strand” is cleaved by Ago2.

@/’ L of endogenous Exportin 5 for nuclear export.

) @ | Exportin5 ‘ &
0 I )

T
® o>’

® The “passenger strand” is released.
® The “guide strand” is integrated in the active RNA Interference

©)] l Specificity Complex (RISC) that contains different argonautes and
af Target mRNA argonaute-associated proteins.
(@ The siRNA guides RISC to the target mRNA.
0 RISC delivers the mRNA to cytoplasmic foci named processing
'1' bodies (P-bodies or GW-bodies) wherein mRNA decay factors are
@ concentrated.
© The target mRNA is cleaved by Ago2 and degraded.

Active RISC

®)
- -
R
el
/05 .
& InvivoGen
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Total RNA

\Y

MRNA

\Y

Library Prep

\Y

Sequencing

\Y

Quality Control

\Y

Cluster/Assembly

\Y

Analysis
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Qualitative RNA-Seq

Alternative Splicing

E1 E2 E3

E1 E3 MRNA transcript isoforms

Exon Mapping

Gene Annotation

PDB
S1 S2 S3
- = aE
—_— rz| R
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DISCOVER FULL-LENGTH TRANSCRIPTS

Get a complete view of transcript isoform diversity with
PacBio long-read sequencing.

RNA Sequencing

Single Molecule, Real-Time (SMRT) Sequencing and Iso-Seq analysis allow you to generate
l/\\ g full-length cDNA sequences — no assembly required — to characterize transcript isoforms

within targeted genes or across an entire transcriptome so that you can easily and affordably:

- Discover new genes, transcripts and alternative splicing events

- Improve genome annotation to identify gene structure, regulatory elements,
and coding regions

- Increase the accuracy of RNA-seq quantification with isoform-level resolution

GOC
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DETERMINATION OF TRANSCRIPT ISOFORMS

cene —HEN—IE—E T
- —
MRNA | ﬁ

isoforms | -
— -—'___-_——“'\
ﬂ- | .

Short-read - - — - -

technologies: — - — - — -
Insufficient Connectivity Reads spanning
Splice Isoform Uncertainty splice junctions

Iso-Seq _ —_—

solution: I

Full-length cDNA Sequence Reads
Splice Isoform Certainty — No Assembly Required

| —

The Iso-Seqg method allows you to make evidence-based genome
annotations, discover novel genes and isoforms, identify promoters and
splice sites to understand gene regulation, improve accuracy of RNA-seq
quantification for gene expression studies, and distinguish important
stress response, developmental, or tissue-specific isoforms.

GOC
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INNOVATION

RNA-Seq: a revolutionary tool for
transcriptomics

Zhong Wang, Mark Gerstein and Michael Snyder

Abstract | RNA-Seq is a recently developed approach to transcriptome profiling
that uses deep-sequencing technologies. Studies using this method have
already altered our view of the extent and complexity of eukaryotic
transcriptomes. RNA-Seq also provides a far more precise measurement of
levels of transcripts and their isoforms than other methods. This article describes
the RNA-Seqapproach, the challenges associated with its application, and the
advances made so far in characterizing several eukaryote transcriptomes.

Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews
Genetics, 10, 57-63.
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Experimental Design
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RNA-Seq Hype

Massive Parallel Sequencing Hype

, Analysis
: Sequening
Experiement A B C

33
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2\ What do we know about our own
-/ transcriptome?

Number of well-validated genes: ?

Percentage of protein-coding genes: 92

Prevalence of alternative splicing: ?

Average number of transcript isoforms per gene: 9?

35 GDA | 24.06.2025 | JCW
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Molecular cmm
BioSystems

PAPER e

@C“’“M::“ Strand-specific RNA-seq analysis of the
| | Lactobacillus delbrueckii subsp. bulgaricus
gt‘esggs: Mol. BioSyst., 2016, tl’an s Cl’i pt om e.{.

Huajun Zheng,” Enuo Liu,i® Tao Shi,? Luyi Ye,? Tomonobu Konno,”
Munehiro Oda“ and Zai-Si Ji**°

Lactobacillus delbrueckii subsp. bulgaricus 2038 is an industrial bacterium that is
used as a starter for dairy products. ... Here, we utilized RNA-seq to explore the
transcriptome of Lb. bulgaricus 2038 from four different growth phases under whey
conditions. The most abundantly expressed genes in the four stages were mainly
involved in translation (for the logarithmic stage), glycolysis (for control/lag stages),
lactic acid production (all the four stages), and 10-formyl tetrahydrofolate production

(for the stationary stage).

36 GDA | 24.06.2025 | JCW
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Product % expressed

Conserved hypothetical protein 16.7
Small heat shock protein 5.7
Chaperonin GroES 2.6
Conserved hypothetical protein 2.2
Chaperonin GroEL 1.3
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What is the purpose of your
~/ RNAseq experiment?

The (central) purpose of an RNA-seqg experiment can be:

e to quantify transcription (DE or time series)

e establish a reference (transcriptome)

e to identify the structure (exons) of transcribed genes
e explore splice junctions

e characterise small RNA

e identify novel/rare transcripts

e transcriptional start sites / orientation

Methode

GOC
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%9\ What resources are available and
~/ what is the quality?

References (e.g. genome, transcriptome)
Assembly Quality (e.g. draft, contamination)

Annotation Level (e.g. unknown function, missing)

Methode

40
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How much sequencing is needed?

e How many biological replicates are needed?

e What is the minimum required sequencing depth?

e What is the trade-off between sequencing depth and number of
biological replicates?

e What is your budget?

41 GDA | 24.06.2025 | JCW
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Todd et al. (2015) The power and promise of RNA-seq in ecology and evolution. Molecular Ecology, 25,
1224-1241.
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Fisher, R. A., (1935) The Design of Experiments.
Ed. 2. Oliver & Boyd, Edinburgh.
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Copyright © 2010 by the Genetics Society of America
DOI: 10.1534/genetics.110.114983

Statistical Design and Analysis of RNA Sequencing Data

Paul L. Auer and R. W. Doerge’

Department of Statistics, Purdue University, West Lafayette, Indiana 47907

Manuscript received January 31, 2010
Accepted for publication March 15, 2010

“Indisputably, the best way to ensure reproducibility and accuracy of results is
to include independent biological replicates (technical replicates are no

substitute) and to acknowledge anticipated nuisance factors (e.g., lane, batch,

and flow-cell effects) in the design.”

Auer & Doerge (2010) Statistical Design and Analysis of RNA Sequencing Data. Genetics, 185 no. 2,
405-416-2223.
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Differential expression in RNA-seq:
a matter of depth

Sonia Tarazona 2. Fernando Garcia-Alcalde !. Joaquin Dopazo!, Alberto Ferrer?, and Ana
’ ’ ’ ’
®
Conesal’

! Bioinformatics and Genomics Department, Centro de Investigacion Principe Felipe, Valencia, Spain

2 Department of Applied Statistics, Operations Research and Quality, Universidad Politécnica de Valencia, Valencia,
Spain
" Corresponding author. Email: aconesa@cipf.es

August 29, 2011

“Our results reveal that most existing methodologies suffer from a

strong dependency on sequencing depth for their differential
expression calls and that this results in a considerable number of false

positives that increases as the number of reads grows.”

Tarazona S, Garcia-Alcalde F, Dopazo J, Ferrer A, Conesa A (2011) Differential expression in RNA-
seq: a matter of depth. Genome Research, 21, 2213-2223.

GDA | 24.06.2025 | JCW



46

> Experimental Design

Vol. 30 no. 3 2014, pages 301-304

D’ s co VER Y N o TE doi: 10. 1093/ bioinformatics/bHEE8

Gene expression Advance Access publication December 6, 2013
RNA-seq differential expression studies: more sequence or

more replication?

Yuwen Liu'?, Jie Zhou'* and Kevin P. White'-%3*
flnstitute of Genomics and Systems Biology, “Committee on Development, Regeneration, and Stem Cell Biology and
“Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA

Associate Editor: Janat Kelso

“Our analysis showed that sequencing less reads and performing
more biological replication is an effective strategy to increase
power and accuracy in large-scale differential expression RNA-seq
studies, and provided new insights into efficient experiment design of

RNA-seq studies.”

2X10M (20M) PE-reads > 2x15M (30M) PE-reads => 6% increase
2Xx10M (20M) PE-reads > 3x10M (30M) PE-reads => 35% increase
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How many biological replicates are needed in an RNA-seq
experiment and which differential expression tool should

you use?

NICHOLAS J. SCHURCH,"* PIETA SCHOFIELD,"** MAREK GIERLINSKI,'** CHRISTIAN COLE,'*
ALEXANDER SHERSTNEV,"* VIJENDER SINGH,? NICOLA WROBEL,' KARIM GHARBI,*
GORDON G. SIMPSON,* TOM OWEN-HUGHES,” MARK BLAXTER,” and GEOFFREY ). BARTON'"?*

Division of Computational Biology, College of Lite Sciences, University of Dundee, Dundee DD 5EH, United Kingdom

“Division of Gene Regulation and Expression, College of Lite Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom

Edinburgh Genomics, University of Edinburgh, Edinburgh EH9 3]T, United Kingdom
e, Dundee DD 5EH, United Kingdom

'Division of Plant Sciences, College of Lite Sciences, University of Dundk
niversity of Dundee, Dundee DD1 5EH, United Kingdom

'‘Division of Biological Chemistry and Drug Discovery, College of Lile Sciences, |

“With three biological replicates, nine of the 11 tools evaluated found
only 20%—-40% of the significantly differentially expressed (SDE) genes
identified with the full set of 42 clean replicates. This rises to >85% for
the subset of SDE genes changing in expression by more than fourfold.
To achieve >85% for all SDE genes regardless of fold change requires

more than 20 biological replicates.”

Schurch et al. (2016) How many biological replicates are needed in an RNA-seq experiment and
which differential expression tool should you use? RNA, 22, 839-851.
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A large benchmarking experiment with 48 replicates per condition
(Schurch et al., 2016) found:

e 3 replicates capture only ~20-40% of differentially expressed
genes.

e 6 replicates recover >85 % of strong signals.

e =212 replicates are needed to reliably detect all differential
genes regardless of effect size

Schurch et al. (2016) How many biological replicates are needed in an RNA-seq experiment and
which differential expression tool should you use? RNA, 22, 839-851.
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Statistical Power ot RNA-seq Experiments

Power analysis is a critical step in experimental design. It helps determine the number of samples
needed to detect an effect of a given size with a specified level of statistical confidence. Alternatively,
when sample size is constrained, it allows us to estimate the probability (statistical power) of
detecting such effects. If this probability is too low, it may be advisable to adjust the design, increase

replication, or reconsider the feasibility of the experiment.

The following four quantities have an intimate relationship:

(1) sample size (e.g. number of replicates)

(2) effect size (e.g. fold-change)
(3) significance level = P(Type I error) = probability of finding an effect that is not there
(4) power = 1 - P(Type II error) = probability of finding an effect that is there

Given any three, we can determine the fourth.

Source: http://www.statmethods.net/stats/power.html
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In RNA-seq experiments, gene expression is measured as count data — the number
of reads mapping to each gene. These counts are not only affected by biological
differences, but also by technical variation, resulting in overdispersion (variance >

mean).

The negative binomial (NB) distribution is used to model this overdispersed count
data. It introduces a dispersion parameter that accounts for variability beyond what

the Poisson distribution can handle.

This makes the NB model ideal for power analysis in RNA-seq, as it allows researchers
to:

e Estimate the probability of detecting a given fold change in expression,
e At a specified false discovery rate (FDR),
e Given a known or estimated dispersion and sequencing depth.

Using the NB model, tools like RNASeqPower help determine how many biological
replicates are needed to reliably detect differential expression — balancing cost,
statistical power, and biological variability.

GDA | 24.06.2025 | JCW
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Tools or approaches that assume a negative binomial distribution:

e DESeq2 (estimateSizeFactors and estimateDispersions)
e edgeR (RNAsegPower and glmLRT)

e RNASeqPower R package
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Greyscale dashed: Bluescale solid:
inbred zebrafish line wild fish population
(CVv=0.2) (CV =0.6)

Coefticient of Variation (CV)

CV measures how much a gene’s expression varies compared to its average level. It's calculated by
dividing the standard deviation by the mean expression across samples. A low CV means the gene’s
expression is consistent, while a high CV means it varies a lot. Understanding CV helps us
identify reliable genes and estimate how many samples are needed to detect real differences.
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Simple guide to power and replication in RNA-seq

Greyscale dashed:
inbred zebrafish line

(CVv=0.2)

Bluescale solid:

wild fish population
(CV =0.6)

Power

Biological
replicates

0.0 — 2
I I I [ I
1.5 2 2.5 3 -

Effect size (fold change)

Todd et al. (2015) The power and promise of RNA-seq in ecology and evolution. Molecular Ecology, 25, 1224-1241.
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Simple guide to power and replication in RNA-seq

0.8 — E Greyscale dashed:
: . inbred zebrafish line
= | (CVv=0.2)
0.6 — E
3 - | Bluescale solid:

o = | wild fish population
0.4 — .
0.2 — -
0.0 — .
| l ! I 1
1.5 2 2.5 3 -

Effect size (fold change) log2

Todd et al. (2015) The power and promise of RNA-seq in ecology and evolution. Molecular Ecology, 25, 1224-1241.
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Todd et al. (2015) The power and promise of RNA-seq in ecology and evolution. Molecular Ecology, 25, 1224-1241.
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Simple guide to power and replication in RNA-seq

10 @====== g e ‘
Py
0.8 — = Greyscale dashed:
' - inbred zebrafish line
= (CV=0.2)
0.6 — "
o : d‘
g = | Bluescale solid:
o = [ wild fish population
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E Biological
0.2 — - replicates
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Effect size (fold change) log2(4)=2

Todd et al. (2015) The power and promise of RNA-seq in ecology and evolution. Molecular Ecology, 25, 1224-1241.
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When planning an RNA-seq experiment, there are
many uncertainties to consider:

e \What does the expression landscape look like?

e How complex is the library?

e How will the reads be distributed across genes?
These factors can greatly affect the success of the
study. Running a pilot experiment can provide
valuable insights into these questions, helping to
optimise the design and improve the chances of

meaningful results.
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CLEAR SCIENTIFIC QUESTION - EXPRESSION DIFFERENCE

SAMPLE QUALITY AND STRINGENT QC MEASURES

RIBOSOMAL REMOVAL

USE SPIKE-IN CONTROLS (External RNA Controls Consortium - ERCC)
ALIGN TO THE GENE SET (TRANSCRIPTOM) AND GENOME
BIOLOGICAL REPLICATES (MIN 3) - MORE REPLICATES THAN DEPTH
10-20M MAPPED READS PER SAMPLE - MEAN READ DEPTH 10 PER TRANSCRIPT
NOISE THRESHOLD AND REDUCTION

PILOT SEQUENCING EXPERIMENTS > DE NOVO TRANSCRIPTOME ASSEMBLY

N
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Tomato - Flavour - Experiment

Flavour is a balance of acidity and sugar, along with
the influence of elusive volatile compounds that
contribute to aroma and taste. Regardless of variety,
growing conditions - such as temperature - can also
influence flavour.

Treatment #1 t,=27°C / t,=15°C
Treatment #2 t1=29°C / t,=18°C

59
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ADH1TA Gene - Experiment

Alcohol Dehydrogenase 1A (Class ), Alpha Polypeptide

This gene encodes class | alcohol dehydrogenase,
alpha subunit, which is a member of the alcohol
dehydrogenase family. Members of this enzyme
family metabolize a wide variety of substrates,

including ethanol.

Design a study to investigate population-level
variation in ADHTA gene expression across

metapopulations of marmosets.

GDA | 24.06.2025 | JCW
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davaple Considerations

When designing an RNA-seq experiment, it's important to consider
which cells or tissues you are analyzing. Not all cell types respond the
same way to a treatment or condition. Some cells may show strong
changes in gene expression, while others remain largely unaffected.
Choosing the right cell population is crucial to detecting meaningful
biological signals and avoiding diluted or misleading results.
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ADH1TA Gene Expression
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ADH1A encodes a member of the alcohol dehydrogenase family. The encoded
protein is the alpha subunit of class | alcohol dehydrogenase, which consists of
several homo- and heterodimers of alpha, beta and gamma subunits. Alcohol
dehydrogenases catalyze the oxidation of alcohols to aldehydes. This gene is
active in the liver in early fetal life but only weakly active in adult liver. This
gene is found in a cluster with six additional alcohol dehydrogenase genes,
including those encoding the beta and gamma subunits, on the long arm of
chromosome 4. Mutations in this gene may contribute to variation in certain
personality traits and substance dependence.

GeneCards

HUMAN GENE DATABASE
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Single-cell RNA sequencing (scRNA-seq)

Microscope Cc FACS

Y B s :?
I‘ ] 7 Multispectral detector
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:
P
* .

9 structure of the barcode primer bead

PCR
handle Cell barcode UMI
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lysis S
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I ——Droplets

Bead Cell
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LCM Microfluidics Blood collection
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Single-cell isolation techniques:

a The limiting dilution method isolates individual
cells, leveraging the statistical distribution of
diluted cells. b Micromanipulation involves
collecting single cells using microscope-guided
capillary pipettes. ¢ FACS isolates highly purified
single cells by tagging cells with fluorescent marker
proteins. d Laser capture microdissection (LCM)
utilizes a laser system aided by a computer system
to isolate cells from solid samples. e Microfluidic
technology for single-cell isolation requires
nanoliter-sized volumes. An example of in-house
microdroplet-based microfluidics (e.g., Drop-Seq). f
The CellSearch system enumerates CTCs from
patient blood samples by using a magnet
conjugated with CTC binding antibodies. g A
schematic example of droplet-based library
generation. Libraries for scRNA-seq are typically
generated via cell lysis, reverse transcription into
first-strand cDNA using uniquely barcoded beads,
second-strand synthesis, and cDNA amplification.

Source: Lee and Bang (2019) Single-cell RNA sequencing
technologies and bioinformatics pipelines. Experimental &
Molecular Medicine 50
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Lilsrary Breparation

Library preparation converts RNA into a form suitable for sequencing.
Different sequencing platforms use distinct protocols: some require
converting RNA into complementary DNA (cDNA) before sequencing,
while others can directly sequence RNA molecules. Understanding these

differences helps choose the right approach for your experiment.
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Whole-Transcriptome Sequencing with Illumina

Output Range
Run Time

Reads per Run

Maximum Read Length

Samples per Run?

Relative Price per Sample*

Relative Instrument Price¥

NextSeq'T

20-120 Gb
11-29 hr

130-400 million

2 x 150 bp

2-8

Higher Cost

Lower Cost

HiSeq 4000

125-1500 Gb
< 1-3.5 days

2.5-5 billion

2 x 150 bp

50-100

Mid Cost

Mid Cost

GOC

N m o ()]
[y m [l m
B] =) < 3
Lo ct m 1]
n 3 ] ot
> (] (7] .
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<
L}
| S—
R—
NovaSeq 6000 1T
134-6000 Gb
13-44 hr
Up to 20 billion
2 x 150 bp
26-400
Lower Cost
Higher Cost
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mRNA

Poly(A) RNA
5 4

(AAAAAAAAAAAAR)3 '

The poly-A tail is a long chain of adenine nucleotides that is added to a
messenger RNA (mRNA) molecule during RNA processing to increase
the stability of the molecule. Additionally, the poly-A tail allows the
mature messenger RNA molecule to be exported from the nucleus and
translated into a protein by ribosomes in the cytoplasm.

Source: Scitable by Nature Education
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3'-Method

Poly(A) RNA

(AAAAAAAAAAAAA)3

— ( TTTTTTTT )
Reverse Transcription \

5’
3!

A reverse transcriptase is an enzyme used to generate
complementary DNA from an RNA template.
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removal of RNA
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Reverse Transcription

5, random” priming

(TTTTTTTT)

¥

5’
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Double-stranded cDNA library

72
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Library Amplification for Multiplexing

[llumina index

llumina index

Possible Bias:

* over-representation of transcript end
® non-random starting point

*short fragments are prefered

GOC
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Traditional method (KAPA)

3’ method (LEXO)

Step 1: Capture polyA tailed RNA from total RNA using
magnetic oligo dT beads &

S

mRNA

Step 1: 1% strand synthesis of polyA tailed RNA from total

RNA using oligo dT primers
5
Oligo dT
3 primer

5' AAAAAA 3'
mRNA

Step 2: mRNA fragmentation

R — _’,,_\ i
e ———— . —
— Heat, Mg’ :’{‘:3’:;

[ Step 3: 1° strand synthesis with random primers

€ 5 Random primer
5' 3
mRNA

Step 2: Degradation of the RNA template

%

Step 4: 2" strand synthesis with dUDP

S J G CE G S S G SUIS NS SIS E——
5 3

Step 5: A-tailing and barcoded adapter ligation
3 "
\—u—u—a—u—u—u—u—u—u—J5

= N\

5 3

Step 3: 2™ strand synthesis with random primers
containing 5 lllumina-compatible linker sequences
Random

/ 5'
) primer

Step 6: Amplification (dUTP strand is not amplified)

Step 7: Sequencing

> 3
Step 4: Amplification using random primers that
add barcodes and cluster generation sequences

</

—

Step 5: Sequencing

Source: Ma et al. (2019) BMC Genomics 20/9.
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The number of differentially expressed transcripts detected by the
Trad-KAPA and 3'-LEXO, before and after subsampling from 10 million

reads

Sequencing  Trad- Intersection (with 3'- Intersection (with Intersection (Trad-KAPA and
Depth KAPA 10m) LEXO 10m) 3'-LEXO)

1 million 343 339 (98.8%) 257 249 (96.9%) 177

2.5 million 758 742 (97.9%) 474 460 (97.0%) 329

5 million 1234 1194 (96.8%) 777 740 (95.2%) 562

10 million 1982 1982 1157 1157 882

Source: Ma et al. (2019) BMC Genomics 20/9.
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Direct RNA Sequencing Kit

full-length

’,,———~\\\‘__”’,,f’—_‘\\\h__’_,AhummmammmmhmmmmA
MRNA

P —— { ligation of RT splint

/\/_\/AAAAAAAAAAAAAAAAAAAAAA
TTTTTTTTTT

l reverse transcription

",——‘-\\\\\_——”’,ff’—_—\\\\‘__—”,AMU%ANV%ANU%AMU&AA
/_\/\/T'iuuuuuul'iuuu
N { ligation of

sequencing adapters

’,f’——-\\\\-_——’,/”———‘\\\\__—_,—AMUAMU%AM%AM&AN%A J'/
/\_/\_/ TTTTTTTTTTTTTTTTTTTTTT i

|

sequence RNA strand

ONT
Input requirement: 500 ng RNA

Preparation time: 110 min
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Date Filtering

Filtering RNA-seq data is an important step to remove low-quality or
uninformative reads and genes. However, the need for filtering depends
heavily on the characteristics of each dataset - such as sequencing
depth, sample quality, and experimental design. Because of this
variability, general filtering recommendations don’t always apply, and
filtering strategies should be tailored to the specific data and research

questions.
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> Adaptor sequences (trim or remove)
* Non-mRNA (e.g. SSU rRNA)
> Low complexity sequences

» Contamination
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Transeript Integrity

RNA integrity is crucial for reliable RNA-seq results. Degraded
RNA can lead to biased gene expression measurements and
affect data quality.
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Sigurgeirsson et al. (2014) found than more than half of the

genes were differentially expressed due to in vitro RNA
degradation.

Wang L, Nie J, Sicotte H, et al. (2016 ) Measure transcript integrity using RNA-seq
data. BMC Bioinformatics.

Sigurgeirsson B, Emanuelsson O, Lundeberg J. (2014) Sequencing degraded RNA
addressed by 3’ tag counting. PLoS One.

30
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Wang et al. BMC Bioinformatics (2016) 17:58

DOI 10.1186/512859-016-0922-2 BMC Bioinformatics

METHODOLOGY ARTICLE Open Access

Measure transcript integrity using @
RNA-seq data

Liguo Wang''®, Jinfu Nie'", Hugues Sicotte', Ying Li', Jeanette E. Eckel-Passow', Surendra Dasari', Peter T. Vedell',
Poulami Barman', Liewei Wang®, Richard Weinshiboum?, Jin Jen?, Haojie Huang®, Manish Kohli*
and Jean-Pierre A. Kocher'”

Abstract

Background: Stored biological samples with pathology information and medical records are invaluable resources
for translational medical research. However, RNAs extracted from the archived clinical tissues are often substantially
degraded. RNA degradation distorts the RNA-seq read coverage in a gene-specific manner, and has profound
influences on whole-genome gene expression profiling.

Result: We developed the transcript integrity number (TIN) to measure RNA degradation. When applied to 3
independent RNA-seq datasets, we demonstrated TIN is a reliable and sensitive measure of the RNA degradation at
both transcript and sample level. Through comparing 10 prostate cancer clinical samples with lower RNA integrity
to 10 samples with higher RNA quality, we demonstrated that calibrating gene expression counts with TIN scores
could effectively neutralize RNA degradation effects by reducing false positives and recovering biologically meaningful
pathways. When further evaluating the performance of TIN correction using spike-in transcripts in RNA-seq data
generated from the Sequencing Quality Control consortium, we found TIN adjustment had better control of false
positives and false negatives (sensitivity = 0.89, specificity = 091, accuracy = 0.90), as compared to gene expression
analysis results without TIN correction (sensitivity = 0.98, specificity = 0.50, accuracy = 0.86).

Conclusion: TIN is a reliable measurement of RNA integrity and a valuable approach used to neutralize in vitro RNA
degradation effect and improve differential gene expression analysis.

Keywords: Transcript integrity number, TIN, RNA-seq quality control, Gene expression
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This program is designed to evaluate RNA integrity at transcript level. TIN (transcript integrity number) is named in analogous to RIN (RNA integrity number). RIN (RNA integrity number) is the
most widely used metric to evaluate RNA integrity at sample (or transcriptome) level. It is a very useful preventive measure to ensure good RNA quality and robust, reproducible RNA sequencing.

However, it has several weaknesses:

¢ RIN score (1 <= RIN <= 10) is not a direct measurement of mRNA quality. RIN score heavily relies on the amount of 18S and 28S ribosome RNAs, which was demonstrated by the four fea-
tures used by the RIN algorithm: the “total RNA ratio” (i.e. the fraction of the area in the region of 18S and 28S compared to the total area under the curve), 28S-region height, 28S area ratio
and the 18S:28S ratio24. To a large extent, RIN score was a measure of ribosome RNA integrity. However, in most RNA-seq experiments, ribosome RNAs were depleted from the library to
enrich mRNA through either ribo-minus or polyA selection procedure.

« RIN only measures the overall RNA quality of an RNA sample. However, in real situation, the degradation rate may differs significantly among transcripts, depending on factors such as "AU-
rich sequence”, “transcript length®, “GC content”, “secondary structure® and the “RNA-protein complex”. Therefore, RIN is practically not very useful in downstream analysis such as adjusting

the gene expression count.
« RIN has very limited sensitivity to measure substantially degraded RNA samples such as preserved clinical tissues. (ref: http://www.illumina.com/documents/products/technotes/technote-

truseq-rna-access.pdf).

To overcome these limitations, we developed TIN, an algorithm that is able to measure RNA integrity at transcript level. TIN calculates a score (0 <= TIN <= 100) for each expressed transcript,
however, the medTIN (i.e. meidan TIN score across all the transcripts) can also be used to measure the RNA integrity at sample level. Below plots demonstrated TIN is a useful metric to measure
RNA integrity in both transcriptome-wise and transcript-wise, as demonstrated by the high concordance with both RIN and RNA fragment size (estimated from RNA-seq read pairs).

geneID chrom  tx_start tx end TIN e il |
ABCC2 chrl0 101542354 101611949 I 67.6446525761 1
IPMK chrl0 59951277 60027694 ! 86.383618429 1
RUFY2 chrl0 70100863 70167051 : 43.8967503948 1
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A Simple Guideline to Assess the Characteristics of
RNA-Seq Data

Hindawi

Keunhong Son ©,' Sungryul Yu,” Wonseok Shin (,’
Kyudong Han (,’ and Keunsoo Kang '

‘Department of Microbiology, College of Natural Sciences, Dankook University, Cheonan 31116, Republic of Korea

‘Department of Clinical Laboratory Science, Semyung University, Jecheon 27136, Republic of Korea

‘Department of Nanobiomedical Science ¢ BK21 PLUS NBM Global Research Center for Regenerative Medicine,
Dankook University, Cheonan 31116, Republic of Korea

Next-generation sequencing (NGS) techniques have been used to generate various molecular maps including genomes, epigenomes,
and transcriptomes, Transcriptomes from a given cell population can be profiled via RNA-seq. However, there is no simple way
to assess the characteristics of RNA-seq data systematically. In this study, we provide a simple method that can intuitively evaluate
RNA-seq data using two different principal component analysis (PCA) plots. The gene expression PCA plot provides insights into
the association between samples, while the transcript integrity number (TIN) score plot provides a quality map of given RNA-seq
data. With this approach, we found that RNA-seq datasets deposited in public repositories often contain a few low-quality RNA-seq
data that can lead to misinterpretations, The effect of sampling errors for differentially expressed gene (DEG) analysis was evaluated
with ten RNA-seq data from invasive ductal carcinoma tissues and three RNA-seq data from adjacent normal tissues taken from a
Korean breast cancer patient, The evaluation demonstrated that sampling errors, which select samples that do not representa given
population, can lead to different interpretations when conducting the DEG analysis, Therefore, the proposed approach can be used
to avoid sampling errors prior to RNA-seq data analysis,
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PCA plots of RNA-seq data show the characteristics of samples according
to gene expression (FPKM) levels (left) and RNA quality (TIN score).

Gene expression
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The gene expression PCA plot provides a map
of the distances between samples from which
the characteristics of RNA-seq data can be

inferred.

Source: Son et al. (2018). A Simple Guideline to Assess the Characteristics of RNA-Seq Data. BioMed

research international.
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The transcript integrity number (TIN) score PCA
plot can infer the quality (not the sequencing
quality) of RNA-seq data, which can effectively
discriminate low-quality samples.
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3 Boxplot indicates the RNA quality of
C4 samples according to the TIN scores. A
C3 thick line (black) within the box marks the
C2 mean.
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Source: Son et al. (2018). A Simple Guideline to Assess the Characteristics of RNA-Seq Data. BioMed

research international.
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> Transcript Integrity

Genome browser snapshots of mapped read densities are shown using

integrative genomics viewer (IGV). FPKM, fragments per kilobase of

transcript per million mapped reads.
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Read mapping is the process of assigning sequencing reads to
their origin in the genome or transcriptome. Traditional
methods align reads to a reference genome or transcriptome,
while newer pseudo-mapping approaches use k-mer—-based
strategies to quickly assign reads without full alignment. The
choice of method depends on the read type, experiment goals,
and downstream analysis. Understanding these options is
important before starting mapping and producing count
tables to ensure accurate and meaningful results.
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Program Mappin
9 PP 9 —>
BWA unsphced —_— = = =
TopHat2 spliceo
X P — —>
HISAT2 splicec =— = == =
STAR splicec
Kallisto pseudo-alignment
Salmon pseudo-alignment
Sailtish pseudo-alignment
based on Costa-Silva et al. (2017) PLOS ONE
. . Minimap2 is widely used for mapping long
Mlmmapz SP |Ced ( Ong'read) noisy reads (e.g. from Oxford Nanopore or
PacBio) and supports spliced alignment for RNA-
seq.

GMAP spliced (long-read)

GMAP is specifically designed for aligning cDNA
and RNA sequences.

GraphMap spliced (long-read)

GraphMap also supports long-read alignment
and handles RNA reads with splicing.
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Traget Length
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Mapping Quality
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Mapping RNA-seq reads to a reference is complex and introduces several challenges that can affect downstream
analyses:

® Coverage Bias: Read coverage is rarely uniform across transcripts. Factors like GC content, fragmentation, or
priming strategies can skew coverage, leading to under- or overrepresentation of transcript regions.

® Even Coverage: Ideally, reads should cover transcripts evenly, but biases in sequencing or library prep (e.g. 3’
bias in poly(A) selection) can distort the true expression landscape.

e Mapping Quality: Low-complexity regions, repetitive sequences, or short reads can result in ambiguous
mappings, reducing mapping quality and reliability of quantification.

e Soft Clipping: Mappers may "soft clip" ends of reads that don’t align well, often due to sequencing errors or
adapter contamination. This can affect alignment statistics and interpretation.

® Splicing: Eukaryotic RNA includes introns that must be accounted for. Splice-aware aligners (like HISAT2 or
STAR) are needed to correctly map reads that span exon-exon junctions.

e Multimapping Reads: Reads that map equally well to multiple locations (e.g. in gene families or pseudogenes)
pose a challenge. How these are handled can impact expression estimates.

® Read Length and Type: Short reads may be harder to map uniquely, especially in complex transcriptomes.
Paired-end and longer reads improve mapping precision but increase computational demands.

Successfully navigating these issues requires choosing appropriate tools and carefully evaluating mapping outputs
before proceeding to quantification.
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Traditional alignment methods attempt to match each read to its exact position in the genome
or transcriptome, accounting for splicing, mismatches, and other complexities. While accurate,
this process can be computationally intensive and sometimes unnecessarily detailed for
quantification purposes. This leads us to an alternative approach — pseudo-alignment.

Pseudo-alignment is a lightweight mapping strategy used primarily for transcript quantification.
Instead of aligning each read base-by-base, pseudo-aligners (like kallisto, Salmon, or Sailfish)
determine which transcripts a read could originate from based on shared k-mers. This makes
the process much faster while still providing accurate expression estimates. Pseudo-alignment
does not produce traditional alignment files (like BAM), but outputs transcript-level abundance
estimates directly — ideal for differential expression analysis pipelines.
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Pseudo-Alignment

(@) An example of a read (in black) and three overlapping transcripts

] with exonic regions as shown.

(b) An index is constructed by creating the transcriptome de Bruijn
Graph (T-DBG) where nodes (v1, v2, v3, ... ) are k-mers, each transcript
corresponds to a colored path as shown and the path cover of the
=0 transcriptome induces a k-compatibility class for each k-mer.

(c) Conceptually, the k-mers of a read are hashed (black nodes) to find
the k-compatibility class of a read.

(d) Skipping (black dashed lines) uses the information stored in the T-
DBG to skip k-mers that are redundant because they have the same

k-compatibility class.

(e) The k-compatibility class of the read is determined by taking the
intersection of the k-compatibility classes of its constituent k-mers.

Source: Bray et al. (2016) Near-optimal probabilistic RNA-seq quantification. Nature Biotechnology.

95 GDA | 24.06.2025 | JCW



RNA-Seq [> Data Analysis GOC

96

ys>31uny
3J3u3d)
Altsuaniq
>133usy

Bata Analysis

RNA-seq count tables are the backbone of expression analysis, but they come with
challenges. The data are high-dimensional (many genes, few samples), often sparse,
and typically overdispersed, requiring specialized models like the negative binomial.
Counts are also affected by technical noise, sequencing depth, and batch effects. Careful

normalization, filtering, and statistical modeling are essential to extract reliable biological

insights.
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Online version

Fast-track your RNA-seq insights in hours — not
days

Is RNA-seq data analysis often a bottleneck for you, negatively impacting your
downstream experiments? What if a bioinformatics solution allows you to seamiessly
build gene expression workflows to scale up your RNA-seq projects without requiring

extensive bioinformatics expertise?

Our RNA-seq Analysis Portal is an easy online tool that is:

« Easy and fast: Seamless transition from raw sequencing data (FASTQ files) to
differential gene expression, pathway analysis and downstream validation tools

In just one day
Compatible and flexible: Supports RNA-seq data generated by all commonly

used RNA library preparation Kkits
Economical: Forget about committing to an annual license agreement.
Purchase GeneGlobe Analyze Credits to customize what you spend as per your

need to access the portal

Deepen, improve and accelerate your RNA-seq analyses anytime from the comfort of
your lab, home or even a coffee shop.
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RNA-Seq data is ...

(a) com pOSitionaI (multiple parts of non-negative numbers).

(b) high dimenSionaI (many variables/genes)

d ﬂd U ndel‘d etel‘mined (the number of genes is much greater than the number of samples).

(C) ove rdispel‘sed (variance of the counts of read is larger than expected).

(d) often spares with many zeros cero-inflated).

GDA | 24.06.2025 | JCW

98



RNA-Seq [> Data Analysis GOC

Sequencing Depths

ngp@@d o Subsamples:

X0
é 5 N=1 =»n=1n=0 N=1 =»n=0n="1
% XX N=5 =»n=5n=0 N=5 =»n=2n=1
ng g N=10 = n=8n=2 N=10 =» n=8 n=2

Sequencing depth & Compositionality - Technical variation during sequencing results in varying
sequencing depths. To reduce/remove sequencing depth variation, counts should be normalised. As a

result, we are dealing with compositional rather than absolute data.
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Poisson distributed variables with different means, scaled to mean = 100

0.04 mean = 100 , scaled by 1
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Sparsity - RNA-Seq data (expression table) are zero rich. While log-ratios (network
inference in general) can be used to address compositionality, it is sensitive to zeros
(i.e. negative infinities). Pseudo-counts could solve the problem, but could affect the
results by changing the covariance structure of the data. Alternative treatments of
zeros have been proposed but are problematic as zeros could indicate missing or

under-sampling.

set.seed(240617)

X2 <- sample(1:100, 10, replace = TRUE)
y2 <- sample(1:100, 10, replace = TRUE)
cor(x2,y2)

# 0.466

X1l <- sort(sample(1:100, 10, replace = TRUE), TRUE)
yl <- sort(sample(1:100, 10, replace TRUE), TRUE)
cor(xl,yl)

# 0.883

X3 <- c(x2, rep(0,20))

Y3 <- C(yzl rep(0,20))

cor(x3,vy3)

# 0.790
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easyRNASeq
DEGseq
...... J DESeq / DESeqz
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO NOISeq
edgeR
baySeq
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Gene

Co-Expression
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Module definition

Gene 8
Gene 5

Co-expressed
gene module

Regulatory network
\ identification

Differential co-expression
Enrichment analyses

analyses

Example of a co-expression network analysis. First, pairwise correlation is determined for each possible gene pair in the expression data. These pairwise correlations can
then be represented as a network. Modules within these networks are defined using clustering analysis. The network and modules can be interrogated to identify regulators,
functional enrichment and hub genes. Differential co-expression analysis can be used to identify modules that behave differently under different conditions. Potential disease
genes can be identified using a guilt-by-association (GBA) approach that highlights genes that are co-expressed with multiple disease genes.
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SNP calling from RNA-seq data without a reference
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RNA-seq: Power and Limits Across Systems

RNA-seq is a powerful and reliable tool, particularly for well-annotated model organisms,
for which genomes and gene functions are well characterised. However, challenges arise
more quickly in wild or non-model systems: incomplete or low-quality genomes, sparse
functional annotation, and unpredictable transcript diversity make analysis and
interpretation more difficult. Many differentially expressed genes lack a known function,
and attributing roles based on model organisms can be risky, since gene function may not
be conserved and genes often fulfil multiple functions.

Furthermore, these systems tend to exhibit higher levels of biological variability, resulting
in @ higher coefficient of variation (CV). Consequently, more biological replicates are
required to reliably detect real effects. In such contexts, careful experimental design is as

important as sequencing depth or the analysis pipeline.
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A Quick Recap

Question

Start with a precise scientific question.
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Gather Knowledge

What do you know, what do you have
and what would you still need?

Design
Think carefully about the design and do not just
use the newest technology or cheapest solution.

Pilots

A few well designed tests might be a
good investment.

Replicates

Always use biological replicates.

OOV
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MORE

THINGS
CONSIDERED
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1. Taste Is Polygenic and Complex

"Perfect taste" is subjective and influenced by many genes—those controlling sugar
accumulation, acid metabolism, volatile organic compounds (for aroma), cell wall breakdown

(texture), etc. There’s no single “taste gene.”

2. RNA-seq Is a Snapshot

RNA-seq tells you what's being expressed at a given time in a specific tissue. But taste

develops over time, and expression changes depending on:
e Developmental stage

e Tissue type (skin vs. pulp)
e Environmental factors (light, temperature, water stress)

e Post-harvest ripening
So, your study would need very careful experimental design to capture relevant differences.

3. Expression # Function
Differential expression doesn’t prove causation. A gene might be highly expressed in tasty
fruit, but:
e It could be a downstream effect.
e The key change might be in a regulatory region or involve epigenetics, not transcript
abundance.
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