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Archaeogenetics has revolutionised the study of ancient diseases by providing 
direct genetic evidence of past infections such as plague (Yersinia pestis), 
tuberculosis (Mycobacterium tuberculosis) or hepatitis B virus (HBV), allowing 
researchers to trace the evolution and spread of pathogens through time. These 
discoveries not only improve our understanding of historical diseases, but also 
provide valuable insights into the co-evolution of humans and pathogens.

Why do we have historical evidence going back thousands of 
years for diseases like the plague, tuberculosis, or hepatitis 
but not influenza?

?
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DNA is chemically more stable than RNA, making it more likely to be 
preserved in ancient remains under favourable conditions. 

Due to RNA’s instability, direct evidence of ancient RNA viruses is 
rare. Influenza, being an RNA virus, is particularly challenging to 
study in ancient contexts because its genetic material degrades 
more quickly than DNA.

Stability and Preservation of Ancient DNA vs. RNA
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Nearly 5,000 years ago, a 20-year-old woman was buried in a tomb 
in Sweden - one of Europe’s early farmers, dead in her prime. Now, 
researchers have discovered what killed her: Yersinia pestis, the 
bacterium that causes plague. The sample is one of the oldest ever 
found and belongs to a previously unknown branch of the Y. pestis 
evolutionary tree. This newly discovered strain may have contributed 
to the collapse of large Stone Age settlements across Europe, 
potentially triggering the world’s first pandemic, according to the 
research team. However, other scientists argue that there isn't yet 
enough evidence to confirm this scenario.

Science News Archaeology 2018
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Localisation and Preservation in Archaeological Remains

Preservation - Bacteria responsible for systemic infections, such as those that 
cause plague (Yersinia pestis) or tuberculosis (Mycobacterium tuberculosis), 
are often found in the bloodstream. This allows them to settle in hard tissues 
such as bones and teeth, which are better preserved over time.

Soft tissue localisation - Many viruses cause localised infections, mainly in 
soft tissues, which decompose more rapidly after death. For example, 
influenza typically affects the respiratory tract, and hepatitis primarily affects 
the liver.
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What is RNA? 
Why would I use RNA? 

What is RNA-Seq? 
What can I do with RNA-Seq?
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DNA Sequences 
Reads Genome Analysis

MPS

DNA-Seq
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DNA Sequences 
Reads

RNA Sequences 
Reads Transcriptome Analysis

Genome Analysis

MPS

MPS

MPS == Massive Parallel Sequencing

DNA-Seq

RNA-Seq
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RNA Protein≄
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RNA Protein

Modification Steps
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Feder & Walser (2005) The biological limitations of transcriptomics in elucidating stress and stress 
responses. Journal of Evolutionary Biology.
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t o t a l  

RNA

ncRNA, nmRNA, sRNA, smnRNA, tRNA, mRNA, pcRNA, rRNA, 
5S rRNA, 5.8S rRNA, SSU rRNA, LSU rRNA, NoRC RNA, pRNA, 
6S RNA, SsrS RNA, aRNA, asRNA, asmiRNA, cis-NAT, crRNA, 
tracrRNA, CRISPR RNA, DD RNA, diRNA, dsRNA, endo-siRNA, 
exRNA, gRNA, hc-siRNA, hcsiRNA, hnRNA, RNAi, lincRNA, 
lncRNA, miRNA, mrpRNA, nat-siRNA, natsiRNA, OxyS RNA, 
piRNA, qiRNA, rasiRNA, RNase MRP, RNase P, scaRNA, scnRNA, 
scRNA, scRNA, SgrS RNA, shRNA, siRNA, SL RNA, SmY RNA, 
snoRNA, snRNA, snRNP, SRP RNA, ssRNA, stRNA, tasiRNA, 
tmRNA, uRNA, vRNA, vtRNA, Xist RNA, Y RNA, NATs, pre-
mRNA, circRNA, msRNA, cfRNA, …

mRNA
rRNA
tRNA
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RNA Sequences 
Reads

mRNA

sRNA

circRNA

MPS

RNA Sequences 
Reads mRNA

MPS

RNA library enrichment strategies: 
‣ Size selection – enriching RNA fragments within a specific size range 
‣ Removal of non-target RNA (e.g., ribosomal RNA depletion) 
‣ Targeted enrichment – capturing specific transcripts or regions of interest

RNS-Seq
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t o t a l  

RNA RNA RNA RNA
e n r i c h e d  

RNA

Every cleaning step improves RNA quality — but at a cost.

In most RNA-seq workflows, cleanup steps are essential to remove contaminants that 
could interfere with accurate signal detection. The aim is not to balance purity and 
quantity, but to achieve the level of purity required for reliable downstream analysis — 
even if this results in some loss of material. To compensate, it is important to begin with 
a sufficiently high amount of input RNA.
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In RNA-seq experiments, the quality of your data depends heavily on the quality of 

your starting material. If you start with poor-quality RNA—degraded samples, 

contamination, or insufficient input—no amount of fancy sequencing or analysis can 

fix those problems. This is the principle of “garbage in, garbage out”: bad input 

leads to unreliable results. To get meaningful data, you must ensure good RNA 

quality and proper sample preparation from the very beginning.

Quantity and Quality of RNA

RNA analysis by agarose gel electrophoresis. Lanes 1 and 2 are 
examples of intact RNA with a 28S:18S rRNA ratio of approximately 
2:1. Lane 3 is an example of degraded RNA with RNA smeaing 
below the 28S and 18S RNA bands. Lane 4 is an example of RNA 
degradation resulting in the loss of the 28S rRNA band and an 
accumulation of degraded RNA near the bottom of the gel. Lane 5 
is an example of RNA with significant genomic DNA (gDNA) 
contamination. 

Source: Wieczorek et al. Promega Corporation
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RNA ➜ Total RNA
DNA

mRNA, polyA RNA, polysomal RNA, tRNA, 
ribosomal RNA, lincRNA, miRNA, piRNA, siRNA, 
SRP RNA, tmRNA, snRNA, snoRNA, SmY RNA, 
scaRNA, gRNA, aRNA, crRNA, tasiRNA, rasiRNA, 
7SK RNA
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For transcriptome-based studies, RNA-seq libraries are 
generated by the synthesis of double stranded cDNA followed by 
the addition of sequencing adapters. This method however, does 
not retain any information about the DNA strand from which the 
RNA was transcribed. It is often desirable to create libraries 
that retain the strand orientation of the original RNA 
targets. For example, in some cases transcription creates anti-
sense RNA constructs that may play a role in regulating gene 
expression.

Head et al. (2014). Library construction for next-generation sequencing: Overviews and challenges. 
BioTechniques, 56(2).
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RNA-Seq is a comprehensive high-throughput sequencing approach 
for the quantitative and qualitative analysis of transcriptomes of 
model and non-model organisms.

mRNA

mRNA
g1 g2 g3

mRNA

mRNA

g1

g1

quantity

quality

DEGs
treatment

treatment Alternative Splicing
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Treatment A Treatment B
A1 A2 A3 B1 B2 B3

Gen A
Gen B
Gen C

0
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total RNA

(cDNA)

Library Prep

Sequencing

(Mapping)
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Analysis

Quality Control

Quantitative RNA-Seq 

DEG-Analysis
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Gene A Gene B

21

• mRNA Isolation 
• cDNA 
• Library prep

Sample 1 Sample 2

• Sequencing

• Mapping Gene A Gene B

• Counts Gene A: 
5

10
= 0.5 fold change

Reads

Reference

Gene B: 
9
3
= 3 fold change

The Idea behind DEGs

Reference

5 9 10 3
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RNAi-mediated gene silencing in mammals using 
shRNAs 
① Plasmid-expressed short hairpin RNA (shRNA) requires the activity 
of endogenous Exportin 5 for nuclear export. 

② Ago2 (Argonaute 2) is recruited by TRBP, that forms a dimer with 
Dicer, and then receives the shRNA. 

③ The shRNA is cleaved in one step by Dicer generating a 19-23 nt 
duplex siRNA with 2 nt 3’ overhangs. 

④ After identification of the “guide strand” in the siRNA duplex, the 
“passenger strand” is cleaved by Ago2. 

⑤ The “passenger strand” is released. 

⑥ The “guide strand” is integrated in the active RNA Interference 
Specificity Complex (RISC) that contains different argonautes and 
argonaute-associated proteins. 

⑦ The siRNA guides RISC to the target mRNA. 

⑧ RISC delivers the mRNA to cytoplasmic foci named processing 
bodies (P-bodies or GW-bodies) wherein mRNA decay factors are 
concentrated. 

⑨ The target mRNA is cleaved by Ago2 and degraded.

RNA interference (RNAi) is a post-transcriptional process triggered by the introduction of 
double-stranded RNA (dsRNA) which leads to gene silencing in a sequence-specific manner. 
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E1

26

Total RNA

Library Prep

Sequencing

Cluster/Assembly

Analysis

Quality Control

mRNA
E2 E3

E1 E3 mRNA transcript isoforms

E1

>>>>>> >>> >>>>>>>>
E2 E3

S1 S2 S3

F1

F2

PDB

Qualitative RNA-Seq 
Alternative Splicing

Exon Mapping

Gene Annotation
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Is RNA-Seq still sexy?
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Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews 
Genetics, 10, 57–63.
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Database: PubMed.gov | Search Term: RNA-Seq | Search Field: Title/Abstract

31
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Experimental Design
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RNA

Sequening
Analysis

Publication(s)

RNA-Seq Hype
Massive Parallel Sequencing Hype

Data
RNA

Experiement
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?

RNA-Seq Reality
Massive Parallel Sequencing Reality

Storage
InterpretationMethodQuality 

Amount

Setup
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Number of well-validated genes: >55,000 

Percentage of protein-coding genes: 20% 

Prevalence of alternative splicing: almost all 

Average number of transcript isoforms per gene: >9

What do we know about our own 
transcriptome?

?
?

?
?
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Lactobacillus delbrueckii subsp. bulgaricus 2038 is an industrial bacterium that is 

used as a starter for dairy products. … Here, we utilized RNA-seq to explore the 

transcriptome of Lb. bulgaricus 2038 from four different growth phases under whey 

conditions. The most abundantly expressed genes in the four stages were mainly 

involved in translation (for the logarithmic stage), glycolysis (for control/lag stages), 

lactic acid production (all the four stages), and 10-formyl tetrahydrofolate production 

(for the stationary stage).
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Product % expressed

Conserved hypothetical protein 16.7

Small heat shock protein 5.7

Chaperonin GroES 2.6

Conserved hypothetical protein 2.2

Chaperonin GroEL 1.3
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?
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What is the purpose of your 
RNAseq experiment?

The (central) purpose of an RNA-seq experiment can be: 

• to quantify transcription (DE or time series) 
•establish a reference (transcriptome)   
• to identify the structure (exons) of transcribed genes 
•explore splice junctions 
•characterise small RNA 
• identify novel/rare transcripts 
• transcriptional start sites / orientation 

Design Preparation Methode Analysis Extras
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References (e.g. genome, transcriptome) 

Assembly Quality (e.g. draft, contamination) 

Annotation Level (e.g. unknown function, missing)

What resources are available and 
what is the quality?

Design Preparation Methode Analysis Extras
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•How many biological replicates are needed? 

•What is the minimum required sequencing depth?  

•What is the trade-off between sequencing depth and number of 

biological replicates? 

•What is your budget?

How much sequencing is needed?
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Todd et al. (2015) The power and promise of RNA-seq in ecology and evolution. Molecular Ecology, 25, 
1224–1241.
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Fisher, R. A., (1935) The Design of Experiments. 
Ed. 2. Oliver & Boyd, Edinburgh.
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“Indisputably, the best way to ensure reproducibility and accuracy of results is 

to include independent biological replicates (technical replicates are no 

substitute) and to acknowledge anticipated nuisance factors (e.g., lane, batch, 

and flow-cell effects) in the design.”

Auer & Doerge (2010) Statistical Design and Analysis of RNA Sequencing Data. Genetics, 185 no. 2, 
405-416–2223.
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“Our results reveal that most existing methodologies suffer from a 
strong dependency on sequencing depth for their differential 
expression calls and that this results in a considerable number of false 
positives that increases as the number of reads grows.”

Tarazona S, Garcia-Alcalde F, Dopazo J, Ferrer A, Conesa A (2011) Differential expression in RNA-
seq: a matter of depth. Genome Research, 21, 2213–2223.
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“Our analysis showed that sequencing less reads and performing 
more biological replication is an effective strategy to increase 
power and accuracy in large-scale differential expression RNA-seq 
studies, and provided new insights into efficient experiment design of 
RNA-seq studies.”

2x10M (20M) PE-reads > 2x15M (30M) PE-reads =>  6% increase  
2x10M (20M) PE-reads > 3x10M (30M) PE-reads => 35% increase
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Schurch et al. (2016) How many biological replicates are needed in an RNA-seq experiment and 
which differential expression tool should you use? RNA, 22, 839–851.

“With three biological replicates, nine of the 11 tools evaluated found 
only 20%–40% of the significantly differentially expressed (SDE) genes 
identified with the full set of 42 clean replicates. This rises to >85% for 
the subset of SDE genes changing in expression by more than fourfold. 
To achieve >85% for all SDE genes regardless of fold change requires 
more than 20 biological replicates.”
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Schurch et al. (2016) How many biological replicates are needed in an RNA-seq experiment and 
which differential expression tool should you use? RNA, 22, 839–851.

A large benchmarking experiment with 48 replicates per condition 
(Schurch et al., 2016) found: 

• 3 replicates capture only ~20–40 % of differentially expressed 
genes. 

• 6 replicates recover >85 % of strong signals. 

•≥12 replicates are needed to reliably detect all differential 
genes regardless of effect size
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Statistical Power of RNA-seq Experiments

Power analysis is a critical step in experimental design. It helps determine the number of samples 
needed to detect an effect of a given size with a specified level of statistical confidence. Alternatively, 
when sample size is constrained, it allows us to estimate the probability (statistical power) of 
detecting such effects. If this probability is too low, it may be advisable to adjust the design, increase 
replication, or reconsider the feasibility of the experiment. 

The following four quantities have an intimate relationship: 

 (1) sample size (e.g. number of replicates) 

 (2) effect size (e.g. fold-change) 

 (3) significance level = P(Type I error) = probability of finding an effect that is not there 

 (4) power = 1 - P(Type II error) = probability of finding an effect that is there 

Given any three, we can determine the fourth.

Source: http://www.statmethods.net/stats/power.html

http://www.statmethods.net/stats/power.html
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In RNA-seq experiments, gene expression is measured as count data — the number 
of reads mapping to each gene. These counts are not only affected by biological 
differences, but also by technical variation, resulting in overdispersion (variance > 
mean). 

The negative binomial (NB) distribution is used to model this overdispersed count 
data. It introduces a dispersion parameter that accounts for variability beyond what 
the Poisson distribution can handle. 

This makes the NB model ideal for power analysis in RNA-seq, as it allows researchers 
to: 

• Estimate the probability of detecting a given fold change in expression, 

• At a specified false discovery rate (FDR), 

• Given a known or estimated dispersion and sequencing depth. 

Using the NB model, tools like RNASeqPower help determine how many biological 
replicates are needed to reliably detect differential expression — balancing cost, 
statistical power, and biological variability.
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Tools or approaches that assume a negative binomial distribution: 

• DESeq2 (estimateSizeFactors and estimateDispersions) 

• edgeR (RNAseqPower and glmLRT) 

• RNASeqPower R package
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Coefficient of Variation (CV)

CV measures how much a gene’s expression varies compared to its average level. It’s calculated by 
dividing the standard deviation by the mean expression across samples. A low CV means the gene’s 
expression is consistent, while a high CV means it varies a lot. Understanding CV helps us 
identify reliable genes and estimate how many samples are needed to detect real differences.
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Todd et al. (2015) The power and promise of RNA-seq in ecology and evolution. Molecular Ecology, 25, 1224–1241.
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Todd et al. (2015) The power and promise of RNA-seq in ecology and evolution. Molecular Ecology, 25, 1224–1241.

log2

97%

52%
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Todd et al. (2015) The power and promise of RNA-seq in ecology and evolution. Molecular Ecology, 25, 1224–1241.

log2

100%

71%
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Todd et al. (2015) The power and promise of RNA-seq in ecology and evolution. Molecular Ecology, 25, 1224–1241.

log2(4)=2
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When planning an RNA-seq experiment, there are 

many uncertainties to consider:  

•What does the expression landscape look like?  

•How complex is the library?  

•How will the reads be distributed across genes?  

These factors can greatly affect the success of the 

study. Running a pilot experiment can provide 

valuable insights into these questions, helping to 

optimise the design and improve the chances of 

meaningful results.
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1. CLEAR SCIENTIFIC QUESTION - EXPRESSION DIFFERENCE  

2. SAMPLE QUALITY AND STRINGENT QC MEASURES 

3. RIBOSOMAL REMOVAL 

4. USE SPIKE-IN CONTROLS (External RNA Controls Consortium - ERCC) 

5. ALIGN TO THE GENE SET (TRANSCRIPTOM) AND GENOME 

6. BIOLOGICAL REPLICATES (MIN 3) - MORE REPLICATES THAN DEPTH 

7. 10-20M MAPPED READS PER SAMPLE - MEAN READ DEPTH 10 PER TRANSCRIPT 

8. NOISE THRESHOLD AND REDUCTION 

9. PILOT SEQUENCING EXPERIMENTS > DE NOVO TRANSCRIPTOME ASSEMBLY
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Flavour is a balance of acidity and sugar, along with 
the influence of elusive volatile compounds that 
contribute to aroma and taste. Regardless of variety, 
growing conditions - such as temperature - can also 
influence flavour.

Treatment #1   t1=27ºC / t2=15ºC 
Treatment #2   t1=29ºC / t2=18ºC

Tomato - Flavour - Experiment
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This gene encodes class I alcohol dehydrogenase, 
alpha subunit, which is a member of the alcohol 
dehydrogenase family. Members of this enzyme 
family metabolize a wide variety of substrates, 
including ethanol. 

Design a study to investigate population-level 
variation in ADH1A gene expression across 
metapopulations of marmosets.

ADH1A Gene - Experiment 
Alcohol Dehydrogenase 1A (Class I), Alpha Polypeptide
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Sample Considerations
When designing an RNA-seq experiment, it’s important to consider 
which cells or tissues you are analyzing. Not all cell types respond the 
same way to a treatment or condition. Some cells may show strong 
changes in gene expression, while others remain largely unaffected. 
Choosing the right cell population is crucial to detecting meaningful 
biological signals and avoiding diluted or misleading results.
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?
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ADH1A Gene Expression

www.gtexportal.org



RNA-Seq ▷ Sample Preparation

GDA | 24.06.2025 | JCW 64

ADH1A encodes a member of the alcohol dehydrogenase family. The encoded 
protein is the alpha subunit of class I alcohol dehydrogenase, which consists of 
several homo- and heterodimers of alpha, beta and gamma subunits. Alcohol 
dehydrogenases catalyze the oxidation of alcohols to aldehydes. This gene is 
active in the liver in early fetal life but only weakly active in adult liver. This 
gene is found in a cluster with six additional alcohol dehydrogenase genes, 
including those encoding the beta and gamma subunits, on the long arm of 
chromosome 4. Mutations in this gene may contribute to variation in certain 
personality traits and substance dependence.
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Single-cell RNA sequencing (scRNA-seq)
Single-cell isolation techniques: 
a The limiting dilution method isolates individual 
cells, leveraging the statistical distribution of 
diluted cells. b Micromanipulation involves 
collecting single cells using microscope-guided 
capillary pipettes. c FACS isolates highly purified 
single cells by tagging cells with fluorescent marker 
proteins. d Laser capture microdissection (LCM) 
utilizes a laser system aided by a computer system 
to isolate cells from solid samples. e Microfluidic 
technology for single-cell isolation requires 
nanoliter-sized volumes. An example of in-house 
microdroplet-based microfluidics (e.g., Drop-Seq). f 
The CellSearch system enumerates CTCs from 
patient blood samples by using a magnet 
conjugated with CTC binding antibodies. g A 
schematic example of droplet-based library 
generation. Libraries for scRNA-seq are typically 
generated via cell lysis, reverse transcription into 
first-strand cDNA using uniquely barcoded beads, 
second-strand synthesis, and cDNA amplification. 

Source: Lee and Bang (2019) Single-cell RNA sequencing 
technologies and bioinformatics pipelines. Experimental & 
Molecular Medicine 50
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Library Preparation
Library preparation converts RNA into a form suitable for sequencing. 
Different sequencing platforms use distinct protocols: some require 
converting RNA into complementary DNA (cDNA) before sequencing, 
while others can directly sequence RNA molecules. Understanding these 
differences helps choose the right approach for your experiment.
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Whole-Transcriptome Sequencing with Illumina
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Poly(A) RNA
5’ (AAAAAAAAAAAAA)3’

mRNA

The poly-A tail is a long chain of adenine nucleotides that is added to a 
messenger RNA (mRNA) molecule during RNA processing to increase 
the stability of the molecule. Additionally, the poly-A tail allows the 
mature messenger RNA molecule to be exported from the nucleus and 
translated into a protein by ribosomes in the cytoplasm. 

Source: Scitable by Nature Education
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5’ (AAAAAAAAAAAAA)3’
(TTTTTTTT)3’

5’Reverse Transcription

Poly(A) RNA

A reverse transcriptase is an enzyme used to generate 
complementary DNA from an RNA template.

3’-Method
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5’ (AAAAAAAAAAAAA)3’
(TTTTTTTT)3’

5’

removal of RNA
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(TTTTTTTT)3’

5’

Reverse Transcription

5’

3’

“random” priming
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Double-stranded cDNA library
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Library Amplification for Multiplexing

Illumina index

Illumina index

Possible Bias: 
•over-representation of transcript end 
•non-random starting point 
•short fragments are prefered
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Source: Ma et al. (2019) BMC Genomics 20/9.
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The number of differentially expressed transcripts detected by the 
Trad-KAPA and 3’-LEXO, before and after subsampling from 10 million 
reads

Source: Ma et al. (2019) BMC Genomics 20/9.
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Direct RNA Sequencing Kit

ONT 
Input requirement: 500 ng RNA 

Preparation time: 110 min
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Data Filtering
Filtering RNA-seq data is an important step to remove low-quality or 
uninformative reads and genes. However, the need for filtering depends 
heavily on the characteristics of each dataset - such as sequencing 
depth, sample quality, and experimental design. Because of this 
variability, general filtering recommendations don’t always apply, and 
filtering strategies should be tailored to the specific data and research 
questions.
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‣ Adaptor sequences (trim or remove) 

‣ Non-mRNA (e.g. SSU rRNA) 

‣ Low complexity sequences 

‣ Contamination
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Transcript Integrity
RNA integrity is crucial for reliable RNA-seq results. Degraded 
RNA can lead to biased gene expression measurements and 
affect data quality.
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Sigurgeirsson et al. (2014) found than more than half of the 
genes were differentially expressed due to in vitro RNA 
degradation.

Wang L, Nie J, Sicotte H, et al. (2016 ) Measure transcript integrity using RNA-seq 
data. BMC Bioinformatics. 

Sigurgeirsson B, Emanuelsson O, Lundeberg J. (2014) Sequencing degraded RNA 
addressed by 3′ tag counting. PLoS One. 
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Example output:
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PCA plots of RNA-seq data show the characteristics of samples according 
to gene expression (FPKM) levels (left) and RNA quality (TIN score).

The gene expression PCA plot provides a map 
of the distances between samples from which 
the characteristics of RNA-seq data can be 
inferred.

The transcript integrity number (TIN) score PCA 
plot can infer the quality (not the sequencing 
quality) of RNA-seq data, which can effectively 
discriminate low-quality samples.

Source: Son et al. (2018). A Simple Guideline to Assess the Characteristics of RNA-Seq Data. BioMed 
research international.
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Boxplot indicates the RNA quality of 
samples according to the TIN scores. A 
thick line (black) within the box marks the 
mean. 

Source: Son et al. (2018). A Simple Guideline to Assess the Characteristics of RNA-Seq Data. BioMed 
research international.
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Genome browser snapshots of mapped read densities are shown using 
integrative genomics viewer (IGV). FPKM, fragments per kilobase of 
transcript per million mapped reads.

Source: Son et al. (2018). A Simple Guideline to Assess the Characteristics of RNA-Seq Data. BioMed 
research international.
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Read Mapping
Read mapping is the process of assigning sequencing reads to 
their origin in the genome or transcriptome. Traditional 
methods align reads to a reference genome or transcriptome, 
while newer pseudo-mapping approaches use k-mer–based 
strategies to quickly assign reads without full alignment. The 
choice of method depends on the read type, experiment goals, 
and downstream analysis. Understanding these options is 
important before starting mapping and producing count 
tables to ensure accurate and meaningful results.
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Reads Genome
Mapping

Transcriptome

Mapping Assembling

SR

PE

SR

PE
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Program Mapping
BWA unspliced

TopHat2 spliced
HISAT2 spliced
STAR spliced

Kallisto pseudo-alignment
Salmon pseudo-alignment
Sailfish pseudo-alignment

based on Costa-Silva et al. (2017) PLOS ONE

Minimap2 spliced (long-read)

GMAP spliced (long-read)

GraphMap spliced (long-read)

• Minimap2 is widely used for mapping long 
noisy reads (e.g. from Oxford Nanopore or 
PacBio) and supports spliced alignment for RNA-
seq. 

• GMAP is specifically designed for aligning cDNA 
and RNA sequences. 

• GraphMap also supports long-read alignment 
and handles RNA reads with splicing.
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Gene A

Gene A

20 reads

10 reads

Gene B

15 reads

Gene B

10 reads

20×1.5= 30→ 30
10

= 3 15×1.5= 22.5→ 22.7
7

= 3.2

10×1.5= 15→ 15
10

= 1.5 10×1.5= 15→ 15
7
= 2.1

Traget Length
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Gene A

Gene A

Gene A

Gene A
X X

Mapping Quality

Gene B

Gene C

Gene A
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Gene A

20 reads

20×1.5= 30→ 30
10

= 3

Gene A

20 reads

20×1.5= 30→ 30
10

= 3

Gene A

20 reads

20×1.5= 30→ 30
10

= 3

Traget Coverage
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Mapping RNA-seq reads to a reference is complex and introduces several challenges that can affect downstream 
analyses: 

• Coverage Bias: Read coverage is rarely uniform across transcripts. Factors like GC content, fragmentation, or 
priming strategies can skew coverage, leading to under- or overrepresentation of transcript regions. 

• Even Coverage: Ideally, reads should cover transcripts evenly, but biases in sequencing or library prep (e.g. 3′ 
bias in poly(A) selection) can distort the true expression landscape. 

• Mapping Quality: Low-complexity regions, repetitive sequences, or short reads can result in ambiguous 
mappings, reducing mapping quality and reliability of quantification. 

• Soft Clipping: Mappers may "soft clip" ends of reads that don’t align well, often due to sequencing errors or 
adapter contamination. This can affect alignment statistics and interpretation. 

• Splicing: Eukaryotic RNA includes introns that must be accounted for. Splice-aware aligners (like HISAT2 or 
STAR) are needed to correctly map reads that span exon-exon junctions. 

• Multimapping Reads: Reads that map equally well to multiple locations (e.g. in gene families or pseudogenes) 
pose a challenge. How these are handled can impact expression estimates. 

• Read Length and Type: Short reads may be harder to map uniquely, especially in complex transcriptomes. 
Paired-end and longer reads improve mapping precision but increase computational demands. 

Successfully navigating these issues requires choosing appropriate tools and carefully evaluating mapping outputs 
before proceeding to quantification. 
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Traditional alignment methods attempt to match each read to its exact position in the genome 
or transcriptome, accounting for splicing, mismatches, and other complexities. While accurate, 
this process can be computationally intensive and sometimes unnecessarily detailed for 
quantification purposes. This leads us to an alternative approach — pseudo-alignment.

Pseudo-alignment is a lightweight mapping strategy used primarily for transcript quantification. 
Instead of aligning each read base-by-base, pseudo-aligners (like kallisto, Salmon, or Sailfish) 
determine which transcripts a read could originate from based on shared k-mers. This makes 
the process much faster while still providing accurate expression estimates. Pseudo-alignment 
does not produce traditional alignment files (like BAM), but outputs transcript-level abundance 
estimates directly — ideal for differential expression analysis pipelines.
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Pseudo-Alignment

(a) An example of a read (in black) and three overlapping transcripts 
with exonic regions as shown. 

(b) An index is constructed by creating the transcriptome de Bruijn 
Graph (T-DBG) where nodes (v1, v2, v3, ... ) are k-mers, each transcript 
corresponds to a colored path as shown and the path cover of the 
transcriptome induces a k-compatibility class for each k-mer. 

(c) Conceptually, the k-mers of a read are hashed (black nodes) to find 
the k-compatibility class of a read. 

(d) Skipping (black dashed lines) uses the information stored in the T-
DBG to skip k-mers that are redundant because they have the same 
k-compatibility class. 

(e) The k-compatibility class of the read is determined by taking the 
intersection of the k-compatibility classes of its constituent k-mers.

Source: Bray et al. (2016) Near-optimal probabilistic RNA-seq quantification. Nature Biotechnology.
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Data Analysis

RNA-seq count tables are the backbone of expression analysis, but they come with 

challenges. The data are high-dimensional (many genes, few samples), often sparse, 

and typically overdispersed, requiring specialized models like the negative binomial. 

Counts are also affected by technical noise, sequencing depth, and batch effects. Careful 

normalization, filtering, and statistical modeling are essential to extract reliable biological 

insights.
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RNA-Seq data is … 

(a) compositional (multiple parts of non-negative numbers). 

(b) high dimensional (many variables/genes)  

       and underdetermined (the number of genes is much greater than the number of samples). 

(c) overdispersed (variance of the counts of read is larger than expected). 

(d) often spares with many zeros (zero-inflated).
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Subsamples:

Sequencing Depths

N=1   ➜ n=1 n=0 
N=5   ➜ n=5 n=0 
N=10 ➜ n=8 n=2

N=1   ➜ n=0 n=1 
N=5   ➜ n=2 n=1 
N=10 ➜ n=8 n=2

Sequencing depth & Compositionality - Technical variation during sequencing results in varying 

sequencing depths. To reduce/remove sequencing depth variation, counts should be normalised. As a 

result, we are dealing with compositional rather than absolute data.
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Poisson distributed variables with different means, scaled to mean = 100  

lambda = 100
scaled by 1

lambda = 1000
scaled by 0.1

lambda = 10
scaled by 10
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Sparsity - RNA-Seq data (expression table)  are zero rich. While log-ratios (network 
inference in general) can be used to address compositionality, it is sensitive to zeros 
(i.e. negative infinities). Pseudo-counts could solve the problem, but could affect the 
results by changing the covariance structure of the data. Alternative treatments of 
zeros have been proposed but are problematic as zeros could indicate missing or 
under-sampling. 

set.seed(240617)
x2 <- sample(1:100, 10, replace = TRUE)
y2 <- sample(1:100, 10, replace = TRUE)
cor(x2,y2)
# 0.466
x1 <- sort(sample(1:100, 10, replace = TRUE), TRUE)
y1 <- sort(sample(1:100, 10, replace = TRUE), TRUE)
cor(x1,y1)
# 0.883
x3 <- c(x2, rep(0,20))
y3 <- c(y2, rep(0,20))
cor(x3,y3)
# 0.790
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easyRNASeq 

DEGseq 

DESeq / DESeq2 

NOISeq 

edgeR 

baySeq
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Gene 
Co-Expression 
Networks
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Example of a co-expression network analysis. First, pairwise correlation is determined for each possible gene pair in the expression data. These pairwise correlations can 
then be represented as a network. Modules within these networks are defined using clustering analysis. The network and modules can be interrogated to identify regulators, 
functional enrichment and hub genes. Differential co-expression analysis can be used to identify modules that behave differently under different conditions. Potential disease 
genes can be identified using a guilt-by-association (GBA) approach that highlights genes that are co-expressed with multiple disease genes.
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RNA-seq: Power and Limits Across Systems 

RNA-seq is a powerful and reliable tool, particularly for well-annotated model organisms, 
for which genomes and gene functions are well characterised. However, challenges arise 
more quickly in wild or non-model systems: incomplete or low-quality genomes, sparse 
functional annotation, and unpredictable transcript diversity make analysis and 
interpretation more difficult. Many differentially expressed genes lack a known function, 
and attributing roles based on model organisms can be risky, since gene function may not 
be conserved and genes often fulfil multiple functions. 

Furthermore, these systems tend to exhibit higher levels of biological variability, resulting 
in a higher coefficient of variation (CV). Consequently, more biological replicates are 
required to reliably detect real effects. In such contexts, careful experimental design is as 
important as sequencing depth or the analysis pipeline.
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Question 
Start with a precise scientific question.1

A Quick Recap

2

3

Gather Knowledge 
What do you know, what do you have 

and what would you still need?  

Design 
Think carefully about the design and do not just 
use the newest technology or cheapest solution. 

4Pilots 
A few well designed tests might be a 

good investment.    

5 Replicates 
Always use biological replicates. 
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MORE 
T H I N G S 

CONSIDERED
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1. Taste Is Polygenic and Complex 
"Perfect taste" is subjective and influenced by many genes—those controlling sugar 
accumulation, acid metabolism, volatile organic compounds (for aroma), cell wall breakdown 
(texture), etc. There’s no single “taste gene.”

2. RNA-seq Is a Snapshot 
RNA-seq tells you what’s being expressed at a given time in a specific tissue. But taste 
develops over time, and expression changes depending on: 

• Developmental stage 
• Tissue type (skin vs. pulp) 
• Environmental factors (light, temperature, water stress) 
• Post-harvest ripening 

So, your study would need very careful experimental design to capture relevant differences.

3. Expression ≠ Function 
Differential expression doesn’t prove causation. A gene might be highly expressed in tasty 
fruit, but: 

• It could be a downstream effect. 
• The key change might be in a regulatory region or involve epigenetics, not transcript 

abundance.


