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NGS > RNA-Seq GOC
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RNA-Seq is a comprehensive high-throughput sequencing
approach for the quantitative (and qualitative analysis) of
transcriptomes of model and non-model organisms.

quantity —

A — K — MRNA — N N I
DEGs

treatment
MK — MK — mMRNA — —.—
g1 g2 g3

quality -

— K — mRNA — el m g

treatment Alternatvie Splicing

—»gK—>mRNA—>4-/\“ g’

¥

¥
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The Idea behind DEGs
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Sample 1 Sample 2
« mRNA Isolation X ~
 cDNA i
» Library prep \

[ 1]
* Sequencing
\NIIIII-'
Reads

« Mapping Gene A Gene B Reference Gene A Gene B Reference

 Counts

9
Gene A: % =0.5 fold change =~ Gene B: 3 = 3 fold change
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INNOVATION

RNA-Seq: a revolutionary tool for
transcriptomics

Zhong Wang, Mark Gerstein and Michael Snyder

Abstract | RNA-Seq is a recently developed approach to transcriptome profiling
that uses deep-sequencing technologies. Studies using this method have
already altered our view of the extent and complexity of eukaryotic
transcriptomes. RNA-Seq also provides a far more precise measurement of
levels of transcripts and their isoforms than other methods. This article describes
the RNA-Seqapproach, the challenges associated with its application, and the
advances made so far in characterizing several eukaryote transcriptomes.

Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews
Genetics, 10, 57-63.
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THOMSON REUTERS™
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Database: MEDLINE | Search Term: "RNA-[Ss]eq” OR “"RNA[Ss]eq” | Search Filed: Topic
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29\ What do we know about our own
~/ transcriptome?

Number of (well-)validated genes: ?
Percentage of genes not encoding proteins: ?
Percentage of alternative splicing: ?

Average alternative transcribed forms: ?
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http://www.rna-segblog.com

Researchers use Al, RNA-Seq to unlock the secrets of the
genome

O December 28, 2017 ® Leave a comment © 2,576 Views

Every nine minutes, someone in the US dies from
blood cancer which accounts for about 10 percent of
all cancer deaths. And, every three minutes, one

ke = person in the US is diagnosed with a blood cancer —
about 170,000 people ...

Optimized methodology for the generation of RNA-
sequencmg libraries from Inw -input starting material

O February 12, 2018 ® Leave 2 comment @ 2,315 Views

RNA sequencing (RNA-seq) has become an
important tool for examining the role of the
transcriptome to biological processes. While RNA-seq
has been widely adopted as a popular approach in
many experimental designs, from gene discovery to
mechanistic validation of targets, ...

=

e v s ne vie se de de s s e s v
"W

Poll Results

50%

47%

40%

30%

RNA-Seq Blog Poll Results

We asked: How are you applying RNA-Seq? Total Respondents = 109 Thanks to all who
participated and c...

Bioinformatics Workshop — Introduction to RNA-seq Analysis
Usmg High-Performance Computing and R

14 days ago ® Leave a comment © 1,170 Views

In the Introduction to RNA-seq Analysis Using High-
Performance Computing Workshop, participants will
learn the basics of Unix/Linux and gain experience

using the HMS compute cluster (02). Participants...

«—”-|HARVARD
o~ | CATALYST

THE HARVARD CLINICAL
AND TRANSLATIONAL
SCIENCE CENTER
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LncFinder — an integrated platform for long non-coding RNA
identification

August 9, 2018 ®, Leave a comment © 1,409 Views

[T sogence Discovering new long non-coding RNAs (IncRNAs)
.CUuCauacaaagaag..
Secondary structuse 7/ has been a fundamental step in IncRNA-related
=864 VDD lowsie e 0k research. Nowadays, many machine learning-based
,\i"i'i'i' e e "i-l-i—lw‘"»,_ tools have been developed for INcRNA identification.
7/ A W y - However, many methods predict IncRNAs using
ool el ——= ) sequence-derived features alone, which tend to
g
/ \i'T'i'i' "I 1 I""‘-} \I I ; display unstable performances ...
L AL -
/ A

P ‘_‘_,’ - sea-ime,
Hohsse | apds o S Sy s < ACGU Seq.
Read More »

RNA Sequencing (RNA-Seq) Reveals Extremely Low Levels of
Reticulocyte-Derived Globin Gene Transcripts in Peripheral
Blood From Horses [Equus caballus) and Cattle (Bos taurus)

O 21 daysago ® Leave a comment © 346

RNA-seq has emerged as an important technology
72% ,for measuring gene expression in peripheral blood
samples collected from humans and other vertebrate

b—
1 species. In particular, transcriptomics analyses of

whole blood can be used to study
17% 2% W | immunobiology and develop novel biomarkers of

infectious disease. However, ...

o
I Globin-depleted
Read More »
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Tomato - Flavor - Experiment

Flavor is a balance of acidity and sugar, plus the
influence of elusive volatile compounds for aroma
and flavor. Regardless of variety, grow conditions
such as temperature can influence flavor.

Treatment #1 t,=27°C / t,=15°C
Treatment #2 t1=29°C / t,=18°C

11
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ADH1TA Gene - Experiment

Alcohol Dehydrogenase 1A (Class ), Alpha Polypeptide

This gene encodes class | alcohol dehydrogenase,
alpha subunit, which is a member of the alcohol
dehydrogenase family. Members of this enzyme
family metabolize a wide variety of substrates,

including ethanol.

Design a study to better understand
metapopulation-based ADHTA gene

expression in Marmoset?
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Sample Design

GOC
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What is the purpose of your RNA-Seg

experiment?

The (central) purpose of an RNA-seqg experiment can be:

e to quantify transcription (DEGs or time series)

e establish a reference (transcriptome)

e to identify the structure (exons) of transcribed genes
e explore splice junctions

e characterise small RNA

e identify novel/rare transcripts

e transcriptional start sites

Methode

15

GOC

N m o ()]

Ajtsuant
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What resources are available and what is

the quality of these resources?

References (e.g. genome, transcriptome)
Assembly Quality (e.g. draft, contamination)

Annotation Level (e.g. unknown function, missing)

Methode

16

GOC
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N m o ()]

Ajtsuant

What factors influence the design?

What is the aim of the experiment (e.g. expression, isoforms)?
How many samples / replicates are needed?

What (min) depth of sequencing coverage is required?

What is the trade off between coverage and biological samples?

How much money do we have?

22.06.20 | GDA20 | JCW
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AIRELE
DESIGN OF
EXPERIMENTS

R.A.FISHER ERS

GOC

N m o ()]
m . m

Fisher, R. A., (1935) The Design of Experiments. Ed. 2. Oliver & Boyd, Edinburgh.
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Count

Todd et al. (2015) The power and promise of RNA-seq in ecology and evolution.
Molecular Ecology, 25, 1224-1241.

Library : pooled samples =» Replicates: n=1
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Copyright © 2010 by the Genetics Society of America
DOI: 10.1534/genetics.110.114983

Statistical Design and Analysis of RNA Sequencing Data

Paul L. Auer and R. W. Doerge’

Department of Statistics, Purdue University, West Lafayette, Indiana 47907

Manuscript received January 31, 2010
Accepted for publication March 15, 2010

“Indisputably, the best way to ensure reproducibility and accuracy of results is
to include independent biological replicates (technical replicates are no

substitute) and to acknowledge anticipated nuisance factors (e.g., lane, batch,

and flow-cell effects) in the design.”

Auer & Doerge (2010) Statistical Design and Analysis of RNA Sequencing Data. Genetics, 185 no. 2,
405-416-2223.
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Differential expression in RNA-seq:
a matter of depth

Sonia Tarazona 2. Fernando Garcia-Alcalde !. Joaquin Dopazo!, Alberto Ferrer?, and Ana
’ ’ ’ ’
®
Conesal’

! Bioinformatics and Genomics Department, Centro de Investigacion Principe Felipe, Valencia, Spain
2 Department of Applied Statistics, Operations Research and Quality, Universidad Politécnica de Valencia, Valencia,
Spain
" Corresponding author. Email: aconesa@cipf.es

August 29, 2011

“Our results reveal that most existing methodologies suffer from a

strong dependency on sequencing depth for their differential
expression calls and that this results in a considerable number of false

positives that increases as the number of reads grows.”

Tarazona S, Garcia-Alcalde F, Dopazo J, Ferrer A, Conesa A (2011) Differential expression in RNA-
seq: a matter of depth. Genome Research, 21, 2213-2223.
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Vol. 30 no. 3 2014, pages 301-304

D I s co VER Y N o TE doi: 10. 1093/ bioinformatics/bH688

Gene expression Advance Access publication December 6, 2013
RNA-seq differential expression studies: more sequence or

more replication?

Yuwen Liu'?, Jie Zhou'* and Kevin P. White'>3*
f.lnstitute of Genomics and Systems Biology, “Committee on Development, Regeneration, and Stem Cell Biology and
“Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA

Associate Editor: Janat Kelso

“Our analysis showed that sequencing less reads and performing
more biological replication is an effective strategy to increase
power and accuracy in large-scale differential expression RNA-seq
studies, and provided new insights into efficient experiment design of

RNA-seq studies.”

2Xx10M (20M) PE-reads > 2x15M (30M) PE-reads => 6% increase
2Xx10M (20M) PE-reads > 3x10M (30M) PE-reads => 35% increase

22.06.20 | GDA20 | JCW



23

> RNA-Seq GOC

ystdny
3J3uUd)
A3Tsuaniq
>T33uUdy

How many biological replicates are needed in an RNA-seq
experiment and which differential expression tool should

you use?

NICHOLAS J. SCHURCH,"* PIETA SCHOFIELD,"** MAREK GIERLINSKI,'** CHRISTIAN COLE,'*
ALEXANDER SHERSTNEV,"* VIJENDER SINGH,* NICOLA WROBEL," KARIM GHARBI,*
GORDON G. SIMPSON,* TOM OWEN-HUGHES,” MARK BLAXTER,” and GEOFFREY ). BARTON'"#~

Division of Computational Biology, College of Lile Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom

“Division of Gene Regulation and Expression, College of Lite Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom

Edinburgh Genomics, University of Edinburgh, Edinburgh EH9 3]T, United Kingdom
'Division of Plant Sciences, College of Lite Sciences, University of Dundee, Dundee DD 5EH, United Kingdom

'‘Division of Biological Chemistry and Drug Discovery, College of Lile Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom

“With three biological replicates, nine of the 11 tools evaluated found
only 20%—40% of the significantly differentially expressed (SDE) genes
identified with the full set of 42 clean replicates. This rises to >85% for
the subset of SDE genes changing in expression by more than fourfold.
To achieve >85% for all SDE genes regardless of fold change requires

more than 20 biological replicates.”

Schurch et al. (2016) How many biological replicates are needed in an RNA-seq experiment and
which differential expression tool should you use? RNA, 22, 839-851.
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Probability Distributions

0.8
" mean=0, standard deviation=1
. mean=2, standard deviation=0.5
0.6
0.4
0.2
0.0
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Probability Distributions

Binomial Distribution
Normal Distribution

Poisson Distribution

- named after the French mathematician Simeon Denis Poisson (1781-1840)
- probability model in biology and medicine

- count data
- the mean and the variance are equal

/’L 2‘ X A (lambda): average number of occurrences

(x) e : constant 2.7183
x : number of occurrences

GOC

N m i (0]

AlTsuant
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Signal-to-noise ratio

SN _ I)signal

noise

Poisson counting errors - The uncertainty inherited in any count-
based measurements.

Non-Poisson technical variance - The observed imprecision
between repeat measurements.

Biological variance - The natural variation in gene expression
measurements.
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Statistical Power of RNA-seq Experiments

Power analysis is an important aspect of experimental design. It allows us to determine the sample size required
to detect an effect of a given size with a given degree of confidence. Conversely, it allows us to determine the
probability of detecting an effect of a given size with a given level of confidence, under sample size constraints.

If the probability is unacceptably low, we would be wise to alter or abandon the experiment.

The following four quantities have an intimate relationship:

(1) sample size (e.g. number of replicates)

(2) effect size (e.g. fold-change)
(3) significance level = P(Type | error) = probability of finding an effect that is not there

(4) power = 1 - P(Type Il error) = probability of finding an effect that is there

Given any three, we can determine the fourth.

Source: http://www.statmethods.net/stats/power.html

27 22.06.20 | GDA20 | JCW
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A simple example: :
o: standard deviation
H= S U: mean
CV = —: coefficent of variation

Inbred vs. Wild
Model Organsims vs. Non-Model Organsims

22.06.20 | GDA20 | JCW
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Model Organsims vs. Non-Model Organsims

O CV': coefficent of variation
C V — — o standard deviation
‘L[ {: mean

inbred animal strains: CV <(0.2

unrelated individuals: CV >0.3

GOC
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e
. : alpha <- 1:10
Coefficent of variance for a i P r1) (sart (alpha) ),
. . . . o xlab="Lambda", ylab="CV",
Poisson distribution Fo1o"tomator, ludes, type'b)

Lo
cV="=)2=—

i JA

cVv
0.6 0.7
|

/

0.4
l
/?

o

0.3

CV: coefficent of variation Lambda

A: average number of event per interval (= mean)

o: standard deviation (= J Variance)
U: mean
| The expected value and variance of a Poisson-distributed random variable are both equal to A.
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Simple guide to power and replication in RNA-seq

Greyscale dashed:
inbred zebrafish line

(CVv=0.2)

Bluescale solid:
wild fish population
(CV =0.6)

Power

Biological
replicates

0.0 — 2
I I I [ I
1.5 2 2.5 3 -

Effect size (fold change)

Todd et al. (2015) The power and promise of RNA-seq in ecology and evolution. Molecular Ecology, 25, 1224-1241.
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Simple guide to power and replication in RNA-seq

1'0_11------.'--"" P g ‘
7
. 927 %
08 — ' =  Greyscale dashed:
' - inbred zebrafish line
=  (CVv=0.2)
08 - |
3 = | Bluescale solid:
o = | wild fish population
0.4 — .
0.2 — .
0.0 — .
| | ! I 1
1.5 2 2.5 3 -
Effect size (fold change) log2

Todd et al. (2015) The power and promise of RNA-seq in ecology and evolution. Molecular Ecology, 25, 1224-1241.
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Simple guide to power and replication in RNA-seq

1.0 —4- - - - 1:_-.&4---:: - e =
, G =t o

Greyscale dashed:
inbred zebrafish line

(Cv=0.2)

Qs | %

Bluescale solid: 52%
wild fish population
(CV =0.6)

Power
A
|
|
[
|

Biological

0.2 — replicates

0.0 —

I I I [
1.5 2 2.5 3

Effect size (fold change) log2

b—-IIIIIIIIIIIIIIIIIIIIIIIIIIIII EEEEER

Todd et al. (2015) The power and promise of RNA-seq in ecology and evolution. Molecular Ecology, 25, 1224-1241.

33 22.06.20 | GDA20 | JCW



34

> RNA-Seq GDC

tunz
3J3u3d)
Altsuaniq
>133usy

Simple guide to power and replication in RNA-seq

1.() "4"'- e 'Il!! jF.J-.JIL.-l-IT=r: 1:'1:‘:":F!=l...'.l- Bl —E— I‘
0.8 — =  Greyscale dashed:
' =  inbred zebrafish line
= (CV=0.2)
0.6 — - ‘. -
& :
g = || Bluescale solid:
o = | wild fish population
0.4 — -
E Biological
0.2 — - replicates
= === 10
. —— 5
. —— 3
0.0 — - 2
| | I I 1
1.5 2 2.5 3 4
Effect size (fold change) log2(4)=2

Todd et al. (2015) The power and promise of RNA-seq in ecology and evolution. Molecular Ecology, 25, 1224-1241.
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a7 e Expression landscape?
~ e Library complexity?

e Read distribution?

w Pilot (Test) Sequencing

GDC

22.06.20 | GDA20 | JCW



NGS > RNA-Seq GOC

yostunz
3J3ud)
>133ud9

o
-
<
m
3
0
[ h
ctr
<

CLEAR SCIENTIFIC QUESTION

SAMPLE QUALITY AND STRINGENT QC MEASURES

RIBOSOMAL REMOVAL

USE SPIKE-IN CONTROLS (External RNA Controls Consortium - ERCC)
ALIGN TO THE GENE SET (TRANSCRIPTOM) AND GENOME
BIOLOGICAL REPLICATES (MIN 3) - MORE REPLICATES THAN DEPTH
10-20M MAPPED READS PER SAMPLE - MEAN READ DEPTH 10 PER TRANSCRIPT
NOISE THRESHOLD AND REDUCTION

PILOT SEQUENCING EXPERIMENTS > DE NOVO ASSEMBLY

ol Lo = oen il s B9 e [
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[

:

Sample preparation
RNA extraction
Cleaning (e.g. remove ribosomal RNA)

GOC

N m L~ (]

AjTsuant
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Quantity and Quality of RNA_/&)

gDNA
contamination

28S rRNA
18S rRNA

degraded
RNA

RNA analysis by agarose gel electrophoresis. Lanes 1 and 2 are examples of intact RNA with a
285:18S rRNA ratio of approximately 2:1. Lane 3 is an example of degraded RNA with RNA
smeaing below the 28S and 18S RNA bands. Lane 4 is an example of RNA degradation resulting
in the loss of the 28S rRNA band and an accumulation of degraded RNA near the bottom of the
gel. Lane 5 is an example of RNA with significant genomic DNA (gDNA) contamination.

Source: Wieczorek et al. Promega Corporation
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@ DNA
RNA =» Total RNA

MRNA, polyA RNA, polysomal RNA, tRNA,
ribosomal RNA, lincRNA, miRNA, piRNA, siRNA,
SRP RNA, tmRNA, snRNA, snoRNA, SmY RNA,
scaRNA, gRNA, aRNA, crRNA, tasiRNA, rasiRNA,
/SK RNA
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Ribosomal RNA Depletion for Efﬁcnent
Use of RNA-Seq Capacity

Dominic O’Neil,! Heike Glowatz,! and Martin Schlumpberger!
!Qiagen, Hilden, Germany }

J -"/‘_ A

ABSTRACT

Ribosomal RNA (rRNA) is the most highly abundant component of RNA, comprising the
majority (>80% to 90%) of the molecules present in a total RNA sample. Depletion of
this rRNA fraction is desirable prior to performing an RNA-seq reaction, so that sequenc-
ing capacity can be focused on more informative parts of the transcriptome. This unit
describes an rRNA depletion method based on selective hybridization of oligonucleotides
torRNA, recognition with a hybrid-specific antibody, and removal of the antibody-hybrid
complex on magnetic beads. Curr. Protoc. Mol. Biol. 103:4.19.1-4.19.8. © 2013 by John
Wiley & Sons, Inc.

Keywords: rRNA depletion e sample preparation ¢ RNA-seq e next generation
sequencing e transcriptome
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RPKM

GOC

N al (S ()
c ) . 1]
3 3 < 3
= ot ) 1}
n 3 3 ot
> m (7] [N

(= N

ot

<

ADH1TA Gene Expression

800

600

4004

2004

=) GTEXPortal

www.gtexportal.org

Q\O
AN

. d
@ &

22.06.20 | GDA20 | JCW



43

> RNA-Seq GOC

ystdny
3J43u3d)
Altsuantq
>T33uUdy

ADH1A encodes a member of the alcohol dehydrogenase family. The encoded
protein is the alpha subunit of class | alcohol dehydrogenase, which consists of
several homo- and heterodimers of alpha, beta and gamma subunits. Alcohol
dehydrogenases catalyze the oxidation of alcohols to aldehydes. This gene is
active in the liver in early fetal life but only weakly active in adult liver. This
gene is found in a cluster with six additional alcohol dehydrogenase genes,
including those encoding the beta and gamma subunits, on the long arm of
chromosome 4. Mutations in this gene may contribute to variation in certain
personality traits and substance dependence.

22.06.20 | GDA20 | JCW
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Single-cell RNA sequencing (scRNA-seq)
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Single-cell isolation techniques:

a The limiting dilution method isolates individual
cells, leveraging the statistical distribution of
diluted cells. b Micromanipulation involves
collecting single cells using microscope-guided
capillary pipettes. ¢ FACS isolates highly purified
single cells by tagging cells with fluorescent marker
proteins. d Laser capture microdissection (LCM)
utilizes a laser system aided by a computer system
to isolate cells from solid samples. e Microfluidic
technology for single-cell isolation requires
nanoliter-sized volumes. An example of in-house
microdroplet-based microfluidics (e.g., Drop-Seq). f
The CellSearch system enumerates CTCs from
patient blood samples by using a magnet
conjugated with CTC binding antibodies. g A
schematic example of droplet-based library
generation. Libraries for scRNA-seq are typically
generated via cell lysis, reverse transcription into
first-strand cDNA using uniquely barcoded beads,
second-strand synthesis, and cDNA amplification.

Source: Lee and Bang (2019) Single-cell RNA sequencing
technologies and bioinformatics pipelines. Experimental &
Molecular Medicine 50
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For transcriptome-based studies, RNA-seq libraries are
generated by the synthesis of double stranded cDNA followed by
the addition of sequencing adapters. This method however, does
not retain any information about the DNA strand from which the
RNA was transcribed. It is often desirable to create libraries
that retain the strand orientation of the original RNA
targets. For example, in some cases transcription creates anti-
sense RNA constructs that may play a role in regulating gene
expression.

Head et al. (2014). Library construction for next-generation sequencing: Overviews and challenges.
BioTechniques, 56(2).
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Library Prep
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Whole-Transcriptome Sequencing
L2l
E
Tomm—
NextSeq | HiSeq 4000 NovaSeq 6000 1T
Output Range 20-120 Gb 125-1500 Gb 134-6000 Gb
Run Time 11-29 hr < 1-3.5 days 13-44 hr
Reads per Run 130-400 million 2.5-5 billion Up to 20 billion
Maximum Read Length 2 x 150 bp 2 x 150 bp 2 x 150 bp
Samples per Run? 2-8 50-100 26-400
Relative Price per Samplet Higher Cost Mid Cost Lower Cost
Lower Cost Mid Cost Higher Cost

Relative Instrument Pricet
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mRNA

Poly(A) RNA
(AAAAAAAAAAADAA)3

The poly-A tail is a long chain of adenine nucleotides that is added to a
messenger RNA (mRNA) molecule during RNA processing to increase

the stability of the molecule. Additionally, the poly-A tail allows the
mature messenger RNA molecule to be exported from the nucleus and

translated into a protein by ribosomes in the cytoplasm.

Source: Scitable by Nature Education
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Poly(A) RNA

5/ (AAAAAAAAAAAAA)3’
3 — ( TTTTTTTT )

Reverse Transcription \5 ,

A reverse transcriptase is an enzyme used to generate
complementary DNA from an RNA template.

49 22.06.20 | GDA20 | JCW



NGS > RNA-Seq GOC

ystdnz
3J3u3d)
Altsuaniq
>133usy

removal of RNA
—————— eeeees =es se———— (AAAAAAAAAAAAA)3

(TTTTTTTT )\

5’

22.06.20 | GDA20 | JCW

50



51

> RNA-Seq

Reverse Transcription

5, random” priming
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Double-stranded cDNA library
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Library Amplification for Multiplexing

[llumina index

llumina index

Possible Bias:

* over-representation of transcript end
® non-random starting point

*short fragments are prefered

GOC
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DISCOVER FULL-LENGTH TRANSCRIPTS

Get a complete view of transcript isoform diversity with
PacBio long-read sequencing.

RNA Sequencing

Single Molecule, Real-Time (SMRT) Sequencing and Iso-Seq analysis allow you to generate
l/\\ {; full-length cDNA sequences — no assembly required — to characterize transcript isoforms

within targeted genes or across an entire transcriptome so that you can easily and affordably:

- Discover new genes, transcripts and alternative splicing events

- Improve genome annotation to identify gene structure, regulatory elements,
and coding regions

- Increase the accuracy of RNA-seq quantification with isoform-level resolution
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DETERMINATION OF TRANSCRIPT ISOFORMS

cene —JHIE—IEE—E-TE -
MRNA | — A

isoforms -,__——~———‘*" _—x—"““‘—_/\-

- T e

Short-read - - — - -

technologies: — - — - — -
Insufficient Connectivity Reads spanning
Splice Isoform Uncertainty splice junctions

Iso-Seq T —_—

solution: I

Full-length cDNA Sequence Reads
Splice Isoform Certainty — No Assembly Required

| —

The Iso-Seqg method allows you to make evidence-based genome
annotations, discover novel genes and isoforms, identify promoters and
splice sites to understand gene regulation, improve accuracy of RNA-seq
quantification for gene expression studies, and distinguish important
stress response, developmental, or tissue-specific isoforms.
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Direct RNA Sequencing Kit

full-length

",f———\\\\~_—””,f’——_\\\\\__—”,AMmAMUAAM%AMUﬂAM%A
MRNA

ligation of RT splint

TTTTTTTTTT S—

/\_/\/AAAAAAAAAAAAAAAAAAAAAA
TITTTITTTT

reverse transcription

",————\\\\\_——”’,¢,¢‘——\\\\‘__—”,AMU%ANV%ANU%AMU%AA
/_\/\/T'iuuuuuul'iuuu
% ligation of

—— _
\. sequencing adapters

"/————\\\\-_——”,’44"_\\\\\__‘—’,AMMAM@&AM%ANM%AN%
/\_/\_/ TTTTTTTTTTTTTTTTTTTTTT

sequence RNA strand

ONT
Input requirement: 500 ng RNA

Preparation time: 110 min
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i

QC and QF
Mapping (genome / transcriptome)
Count Tables (raw counts)
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Sigurgeirsson et al. (2014) found than more than half of the genes were
differentially expressed due to in vitro RNA degradation.

Wang L, Nie J, Sicotte H, et al. (2016 ) Measure transcript integrity using RNA-seq
data. BMC Bioinformatics.

Sigurgeirsson B, Emanuelsson O, Lundeberg J. (2014) Sequencing degraded RNA
addressed by 3’ tag counting. PLoS One.
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Wang et al. BMC Bioinformatics (2016) 17:58

DOI 10.1186/512859-016-0922-2 BMC Bioinformatics

METHODOLOGY ARTICLE Open Access

Measure transcript integrity using @
RNA-seq data

Liguo Wang''®, Jinfu Nie'", Hugues Sicotte', Ying Li', Jeanette E. Eckel-Passow', Surendra Dasari', Peter T. Vedell',
Poulami Barman', Liewei Wang®, Richard Weinshiboum?, Jin Jen?, Haojie Huang®, Manish Kohli*
and Jean-Pierre A. Kocher'”

Abstract

Background: Stored biological samples with pathology information and medical records are invaluable resources
for translational medical research. However, RNAs extracted from the archived clinical tissues are often substantially
degraded. RNA degradation distorts the RNA-seq read coverage in a gene-specific manner, and has profound
influences on whole-genome gene expression profiling.

Result: We developed the transcript integrity number (TIN) to measure RNA degradation. When applied to 3
independent RNA-seq datasets, we demonstrated TIN is a reliable and sensitive measure of the RNA degradation at
both transcript and sample level. Through comparing 10 prostate cancer clinical samples with lower RNA integrity
to 10 samples with higher RNA quality, we demonstrated that calibrating gene expression counts with TIN scores
could effectively neutralize RNA degradation effects by reducing false positives and recovering biologically meaningful
pathways. When further evaluating the performance of TIN correction using spike-in transcripts in RNA-seq data
generated from the Sequencing Quality Control consortium, we found TIN adjustment had better control of false
positives and false negatives (sensitivity = 0.89, specificity = 091, accuracy = 0.90), as compared to gene expression
analysis results without TIN correction (sensitivity = 0.98, specificity = 0.50, accuracy = 0.86).

Conclusion: TIN is a reliable measurement of RNA integrity and a valuable approach used to neutralize in vitro RNA
degradation effect and improve differential gene expression analysis.

Keywords: Transcript integrity number, TIN, RNA-seq quality control, Gene expression
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RSeQC
Lid, ML

tin.py

This program is designed to evaluate RNA integrity at transcript level. TIN (transcript integrity number) is named in analogous to RIN (RNA integrity number). RIN (RNA integrity number) is the
most widely used metric to evaluate RNA integrity at sample (or transcriptome) level. It is a very useful preventive measure to ensure good RNA quality and robust, reproducible RNA sequencing.

However, it has several weaknesses:

« RIN score (1 <= RIN <= 10) is not a direct measurement of mRNA quality. RIN score heavily relies on the amount of 18S and 28S ribosome RNAs, which was demonstrated by the four fea-
tures used by the RIN algorithm: the “total RNA ratio” (i.e. the fraction of the area in the region of 18S and 28S compared to the total area under the curve), 28S-region height, 28S area ratio
and the 18S:28S ratio24. To a large extent, RIN score was a measure of ribosome RNA integrity. However, in most RNA-seq experiments, ribosome RNAs were depleted from the library to
enrich mRNA through either ribo-minus or polyA selection procedure.

« RIN only measures the overall RNA quality of an RNA sample. However, in real situation, the degradation rate may differs significantly among transcripts, depending on factors such as "AU-
rich sequence”, “transcript length®, “GC content”, “secondary structure® and the “RNA-protein complex”. Therefore, RIN is practically not very useful in downstream analysis such as adjusting

the gene expression count.
« RIN has very limited sensitivity to measure substantially degraded RNA samples such as preserved clinical tissues. (ref: http://www.illumina.com/documents/products/technotes/technote-

truseq-rna-access.pdf).

To overcome these limitations, we developed TIN, an algorithm that is able to measure RNA integrity at transcript level. TIN calculates a score (0 <= TIN <= 100) for each expressed transcript,
however, the medTIN (i.e. meidan TIN score across all the transcripts) can also be used to measure the RNA integrity at sample level. Below plots demonstrated TIN is a useful metric to measure
RNA integrity in both transcriptome-wise and transcript-wise, as demonstrated by the high concordance with both RIN and RNA fragment size (estimated from RNA-seq read pairs).

geneID chrom  tx_start tx end TIN e il |
ABCC2 chrl0 101542354 101611949 I 67.6446525761 1
IPMK chrl0 59951277 60027694 ! 86.383618429 1
RUFY2 chrl0 70100863 70167051 : 43.8967503948 1
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A Simple Guideline to Assess the Characteristics of
RNA-Seq Data

Hindawi

Keunhong Son ©,' Sungryul Yu,” Wonseok Shin (,’
Kyudong Han (,’ and Keunsoo Kang '

‘Department of Microbiology, College of Natural Sciences, Dankook University, Cheonan 31116, Republic of Korea

‘Department of Clinical Laboratory Science, Semyung University, Jecheon 27136, Republic of Korea

‘Department of Nanobiomedical Science ¢ BK21 PLUS NBM Global Research Center for Regenerative Medicine,
Dankook University, Cheonan 31116, Republic of Korea

Next-generation sequencing (NGS) techniques have been used to generate various molecular maps including genomes, epigenomes,
and transcriptomes, Transcriptomes from a given cell population can be profiled via RNA-seq. However, there is no simple way
to assess the characteristics of RNA-seq data systematically. In this study, we provide a simple method that can intuitively evaluate
RNA-seq data using two different principal component analysis (PCA) plots. The gene expression PCA plot provides insights into
the association between samples, while the transcript integrity number (TIN) score plot provides a quality map of given RNA-seq
data. With this approach, we found that RNA-seq datasets deposited in public repositories often contain a few low-quality RNA-seq
data that can lead to misinterpretations, The effect of sampling errors for differentially expressed gene (DEG) analysis was evaluated
with ten RNA-seq data from invasive ductal carcinoma tissues and three RNA-seq data from adjacent normal tissues taken from a
Korean breast cancer patient, The evaluation demonstrated that sampling errors, which select samples that do not representa given
population, can lead to different interpretations when conducting the DEG analysis, Therefore, the proposed approach can be used
to avoid sampling errors prior to RNA-seq data analysis,
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PCA plots of RNA-seq data show the characteristics of samples according
to gene expression (FPKM) levels (left) and RNA quality (TIN score).

Gene expression
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®
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The gene expression PCA plot provides a map
of the distances between samples from which
the characteristics of RNA-seq data can be

inferred.

RNA quality
C4
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C2e 1
C9 6
C7 6
Co
N2 ok
e N3
-3000  -2000  —1000 0 1000
PCl1

The transcript integrity number (TIN) score PCA
plot can infer the quality (not the sequencing
quality) of RNA-seq data, which can effectively
discriminate low-quality samples.

Source: Son et al. (2018). A Simple Guideline to Assess the Characteristics of RNA-Seq Data. BioMed research international.
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. Boxplot indicates the RNA quality of
C4 samples according to the TIN scores. A
C3 thick line (black) within the box marks the
C2 mean.
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TIN score

Source: Son et al. (2018). A Simple Guideline to Assess the Characteristics of RNA-Seq Data. BioMed research international.
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Genome browser snapshots of mapped read densities are shown using
integrative genomics viewer (IGV). FPKM, fragments per kilobase of

transcript per million mapped reads.

C3
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Source: Son et al. (2018). A Simple Guideline to Assess the Characteristics of RNA-Seq Data. BioMed research international.
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» Adaptor sequences (trim or remove)
» Non-mRNA (e.g. SSU rRNA)
» Low complexity sequences

» Contamination
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Program Mapping
BWA unspliced
TopHat2 splicec
HISATZ2 splicec
STAR splicec
Kallisto pseudo-alignment
Salmon pseudo-alignment
Sailtish pseudo-alignment

based on Costa-Silva et al. (2017) PLOS ONE
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Traget Length

20x1.5:30%£:3
10

10 reads

10><1.5=15%1—5:1.5
10

71

15><1.5=22.5+227—'7=3.2

10 reads

10><1.5=15%175=2.1
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Mapping Quality
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Traget Coverage

20 reads = 20 reads
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Pseudo-Alignment

(@) An example of a read (in black) and three overlapping transcripts

] with exonic regions as shown.

(b) An index is constructed by creating the transcriptome de Bruijn
Graph (T-DBG) where nodes (v1, v2, v3, ... ) are k-mers, each transcript
corresponds to a colored path as shown and the path cover of the
=0 transcriptome induces a k-compatibility class for each k-mer.

(c) Conceptually, the k-mers of a read are hashed (black nodes) to find
the k-compatibility class of a read.

(d) Skipping (black dashed lines) uses the information stored in the T-
DBG to skip k-mers that are redundant because they have the same

k-compatibility class.

(e) The k-compatibility class of the read is determined by taking the
intersection of the k-compatibility classes of its constituent k-mers.

Source: Bray et al. (2016) Near-optimal probabilistic RNA-seq quantification. Nature Biotechnology.
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Sample Design

Sample preparation
RNA extraction
Cleaning (e.g. remove ribosomal RNA)

Library Prep
Illumina paired-end sequencing

QC and QF
Mapping (genome / transcriptome)
Count Tables (raw counts)

Data Analysis
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RNA-Seq data is ...
(a) com pOSitionaI (multiple parts of non-negative numbers).

(b) high dimenSionaI (many variables/genes)

d ﬂd U ndel‘d etel‘mined (the number of genes is much greater than the number of samples).

(C) ove rdispel‘sed (variance of the counts of read is larger than expected).

(d) often spares with many zeros cero-inflated).
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Sequencing Depths

Mgp@@q o Subsamples:
§ o é 5 N=1 =»n=1n=0 N=1 =»n=0n="

% DXOOX N=5 =»n=5n=0 N=5 =»n=2n=1
mﬁg g N=10=» n=8n=2 N=10=» n=8 n="

Sequencing depth & Compsitionality - Technical variation during sequencing results in varying

sequencing depths. To reduce/remove sequencing depth variation, counts should be normalized. As a

result, we are dealing with compositional rather than absolute data.
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Poisson distributed variables with different means, scaled to

0.04-
0.03-
0.02-
0.01+
0.00+

0.10-

0.05-

0.00+

0.010-

0.005-

0.000+

mean = 100 , scaled by 1

mean = 100

lambda
scaled

100
by 1

mean = 1000 , scaled by 0.1

lambda
scaled

100
by 0.

0
1

mean = 10, scaled by 10

lambda
scaled

by 10
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Sparsity - RNA-Seq data is zero-rich. While log-ratios (network inference

in gneral) can be used to tackle compositionality it is sensitive to zeros (i.e. negative
infinities). Pseudocounts could resolve the issue but might impact the results as they
alter the covariance structure of data. Alternive treatments of zeros have been

proposed but are problematic since zeros could indicate absence or undersampling.

set.seed(200617)

x1 <- sort(sample(1:100, 10, replace = TRUE), TRUE)
yl <- sort(sample(1:100, 10, replace TRUE), TRUE)
cor(xl,yl)

# 0.883

X2 <- sample(1:100, 10, replace = TRUE)

y2 <- sample(1:100, 10, replace TRUE)

Cor(x2,y2)

# 0.466

X3 <- c(x2, rep(0,20))

Y3 <- C(Y2I rep(0,20))

cor(x3,y3)

# 0.790
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edgeR
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Co-expression
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Network construction
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genes
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Module definition

Gene 8
Gene 5

Co-expressed
gene module

Regulatory network
\ identification

Differential co-expression
Enrichment analyses

analyses

Example of a co-expression network analysis. First, pairwise correlation is determined for each possible gene pair in the expression data. These pairwise correlations can
then be represented as a network. Modules within these networks are defined using clustering analysis. The network and modules can be interrogated to identify regulators,
functional enrichment and hub genes. Differential co-expression analysis can be used to identify modules that behave differently under different conditions. Potential disease
genes can be identified using a guilt-by-association (GBA) approach that highlights genes that are co-expressed with multiple disease genes.
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'MOLECULAR ECOLOGY

Molecular Ecology (2015) 24, 710-725 doi: 10.1111 /mec.13055
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INVITED REVIEWS AND SYNTHESES
Ten years of transcriptomics in wild populations: what

have we learned about their ecology and evolution?

MARIANO ALVAREZ,* AARON W. SCHREYf and CHRISTINA L. RICHARDS*
*Department of Integrative Biology, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA, tDepartment
of Biology, Science Center, Armstrong State University, 11935 Abercorn Street, Savannah, GA 31419, USA

“|deally, biological validation of gene function uses independent biological
samples to confirm the up- or down-regulation of genes in response to a
given treatment or condition of interest. Therefore, although we did not
include studies that relied solely on gPCR in our survey of transcriptomics, the
use of gPCR for confirmation of the expression of genes of interest is

essential.”

22.06.20 | GDA20 | JCW



84

> RNA-Seq GOC

ystdny
3J3uUd)
A3Tsuaniq
>T33uUdy

SCIENCE ADVANCES | RESEARCH ARTICLE

EVOLUTIONARY BIOLOGY

The genetic mechanism of selfishness and altruism
in parent-offspring coadaptation

Min Wu'*, Jean-Claude Walser?, Lei Sun3', Mathias Kolliker'**

The social bond between parents and offspring is characterized by coadaptation and balance between altruistic
and selfish tendencies. However, its underlying genetic mechanism remains poorly understood. Using transcriptomic
screens in the subsocial European earwig, Forficula auricularia, we found the expression of more than 1600 genes
associated with experimentally manipulated parenting. We identified two genes, Th and Peblll, each showing
evidence of differential coexpression between treatments in mothers and their offspring. In vivo RNAi experiments
confirmed direct and indirect genetic effects of Th and Peblll on behavior and fitness, including maternal food
provisioning and reproduction, and offspring development and survival. The direction of the effects consistently
indicated a reciprocally altruistic function for Th and a reciprocally selfish function for Peblll. Further metabolic
pathway analyses suggested roles for Th-restricted endogenous dopaminergic reward, Peblll-mediated
chemical communication and a link to insulin signaling, juvenile hormone, and vitellogenin in parent-offspring

coadaptation and social evolution.
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NGS > RNA-Seq GOC
A Quick Recap

Question

Start with a precises scientific question.
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Gather Knowledge

What do you know, what do you have
and what would you still need?

Design
Think carfully about the desing and do not just use
the newest technology or cheapest solution.

Pilots

A few well designed tests might be a
good investment.

Replicates

Always use biological replicates.

OOV
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