
701-1425-00L - Genetic Diversity: Analysis 
RNA-Seq  

Wednesday, June 22, 2020

Jean-Claude Walser 
jean-claude.walser@env.ethz.ch



NGS ▷ RNA-Seq

22.06.20 | GDA20 | JCW 2

RNA-Seq is a comprehensive high-throughput sequencing 
approach for the quantitative (and qualitative analysis) of 
transcriptomes of model and non-model organisms.
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Gene A Gene B

3

• mRNA Isolation 
• cDNA 
• Library prep

Sample 1 Sample 2

• Sequencing

• Mapping Gene A Gene B

• Counts Gene A: 
5

10
= 0.5 fold change

Reads

Reference

Gene B: 
9
3
= 3 fold change

The Idea behind DEGs

Reference
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Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews 
Genetics, 10, 57–63.
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Database: MEDLINE | Search Term: “RNA-[Ss]eq” OR “RNA[Ss]eq” | Search Filed: Topic
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NovaSeq 6000 
2 x 150 bp 

800M - 1.6B rpr
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Number of (well-)validated genes: >55,000 

Percentage of genes not encoding proteins: majority  

Percentage of alternative splicing: almost all 

Average alternative transcribed forms: >9

What do we know about our own 
transcriptome?

?
?

?
?
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http://www.rna-seqblog.com
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RNA-Seq  
Experimental Setup
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Flavor is a balance of acidity and sugar, plus the 
influence of elusive volatile compounds for aroma 
and flavor. Regardless of variety, grow conditions 
such as temperature can influence flavor.

Treatment #1   t1=27ºC / t2=15ºC 
Treatment #2   t1=29ºC / t2=18ºC

Tomato - Flavor - Experiment
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This gene encodes class I alcohol dehydrogenase, 
alpha subunit, which is a member of the alcohol 
dehydrogenase family. Members of this enzyme 
family metabolize a wide variety of substrates, 
including ethanol. 

Design a study to better understand 
metapopulation-based ADH1A gene 
expression in Marmoset?

ADH1A Gene - Experiment 
Alcohol Dehydrogenase 1A (Class I), Alpha Polypeptide
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Sample preparation 
RNA extraction 
Cleaning (e.g. remove ribosomal RNA)

Library Prep

QC and QF 
Mapping (genome / transcriptome) 
Count Tables (raw counts)

Data Analysis

Sample Design

14
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What is the purpose of your RNA-Seq 

experiment?

The (central) purpose of an RNA-seq experiment can be: 

• to quantify transcription (DEGs or time series) 
•establish a reference (transcriptome)   
• to identify the structure (exons) of transcribed genes 
•explore splice junctions 
•characterise small RNA 
• identify novel/rare transcripts 
• transcriptional start sites 

Design Preparation Methode Analysis Extras
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References (e.g. genome, transcriptome) 

Assembly Quality (e.g. draft, contamination) 

Annotation Level (e.g. unknown function, missing)

What resources are available and what is 

the quality of these resources?

Design Preparation Methode Analysis Extras
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What is the aim of the experiment (e.g. expression, isoforms)? 

How many samples / replicates are needed? 

What (min) depth of sequencing coverage is required?  

What is the trade off between coverage and biological samples? 

How much money do we have?

What factors influence the design?
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Fisher, R. A., (1935) The Design of Experiments. Ed. 2. Oliver & Boyd, Edinburgh.
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Library : pooled samples ➜ Replicates: n=1

Todd et al. (2015) The power and promise of RNA-seq in ecology and evolution. 
Molecular Ecology, 25, 1224–1241.
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“Indisputably, the best way to ensure reproducibility and accuracy of results is 

to include independent biological replicates (technical replicates are no 

substitute) and to acknowledge anticipated nuisance factors (e.g., lane, batch, 

and flow-cell effects) in the design.”

Auer & Doerge (2010) Statistical Design and Analysis of RNA Sequencing Data. Genetics, 185 no. 2, 
405-416–2223.
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“Our results reveal that most existing methodologies suffer from a 
strong dependency on sequencing depth for their differential 
expression calls and that this results in a considerable number of false 
positives that increases as the number of reads grows.”

Tarazona S, Garcia-Alcalde F, Dopazo J, Ferrer A, Conesa A (2011) Differential expression in RNA-
seq: a matter of depth. Genome Research, 21, 2213–2223.
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“Our analysis showed that sequencing less reads and performing 
more biological replication is an effective strategy to increase 
power and accuracy in large-scale differential expression RNA-seq 
studies, and provided new insights into efficient experiment design of 
RNA-seq studies.”

2x10M (20M) PE-reads > 2x15M (30M) PE-reads =>  6% increase  
2x10M (20M) PE-reads > 3x10M (30M) PE-reads => 35% increase
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Schurch et al. (2016) How many biological replicates are needed in an RNA-seq experiment and 
which differential expression tool should you use? RNA, 22, 839–851.

“With three biological replicates, nine of the 11 tools evaluated found 
only 20%–40% of the significantly differentially expressed (SDE) genes 
identified with the full set of 42 clean replicates. This rises to >85% for 
the subset of SDE genes changing in expression by more than fourfold. 
To achieve >85% for all SDE genes regardless of fold change requires 
more than 20 biological replicates.”
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Probability Distributions
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Poisson Distribution

Probability Distributions
Binomial Distribution

Normal Distribution

- named after the French mathematician Simeon Denis Poisson (1781-1840)
- probability model in biology and medicine
- count data
- the mean and the variance are equal

f (x) = e−λλ x
x!

λ  (lambda): average number of occurrences
e : constant 2.7183
x : number of occurrences
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Poisson counting errors - The uncertainty inherited in any count-
based measurements.

Non-Poisson technical variance - The observed imprecision 
between repeat measurements.

Biological variance - The natural variation in gene expression 
measurements.

Signal-to-noise ratio 

SNR =
Psignal
Pnoise
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Statistical Power of RNA-seq Experiments
Power analysis is an important aspect of experimental design. It allows us to determine the sample size required 

to detect an effect of a given size with a given degree of confidence. Conversely, it allows us to determine the 

probability of detecting an effect of a given size with a given level of confidence, under sample size constraints. 

If the probability is unacceptably low, we would be wise to alter or abandon the experiment. 

The following four quantities have an intimate relationship: 

 (1) sample size (e.g. number of replicates) 

 (2) effect size (e.g. fold-change) 

 (3) significance level = P(Type I error) = probability of finding an effect that is not there 

 (4) power = 1 - P(Type II error) = probability of finding an effect that is there 

Given any three, we can determine the fourth.

Source: http://www.statmethods.net/stats/power.html

http://www.statmethods.net/stats/power.html
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µ = 5
σ = 0.5

µ = 5
σ = 1.0

CV = 0.1

CV = 0.2

σ : standard deviation
µ: mean

CV = σ
µ

: coefficent of variation

Model Organsims vs. Non-Model Organsims
Inbred vs. Wild

A simple example:
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CV = σ
µ

Model Organsims vs. Non-Model Organsims

CV : coefficent of variation
σ : standard deviation
µ: mean

CV ≤ 0.2

CV > 0.3

inbred animal strains:

unrelated individuals:
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CV = σ
µ
= λ

−1
2 = 1

λ

CV : coefficent of variation
λ: average number of event per interval (= mean)

σ : standard deviation (= Variance)
µ: mean
! The expected value and variance of a Poisson-distributed random variable are both equal to λ.

alpha <- 1:10
plot(1/(sqrt(alpha)), 
xlab="Lambda", ylab="CV", 
col="tomato", lwd=5, typ="b")

Coefficent of variance for a 
Poisson distribution
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Todd et al. (2015) The power and promise of RNA-seq in ecology and evolution. Molecular Ecology, 25, 1224–1241.
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Todd et al. (2015) The power and promise of RNA-seq in ecology and evolution. Molecular Ecology, 25, 1224–1241.

log2

97%

52%
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Todd et al. (2015) The power and promise of RNA-seq in ecology and evolution. Molecular Ecology, 25, 1224–1241.

log2

97%

52%

100%

71%
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Todd et al. (2015) The power and promise of RNA-seq in ecology and evolution. Molecular Ecology, 25, 1224–1241.

log2(4)=2
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• Expression landscape? 
• Library complexity? 
• Read distribution?

☛ Pilot (Test) Sequencing
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1. CLEAR SCIENTIFIC QUESTION 

2. SAMPLE QUALITY AND STRINGENT QC MEASURES 

3. RIBOSOMAL REMOVAL 

4. USE SPIKE-IN CONTROLS (External RNA Controls Consortium - ERCC) 

5. ALIGN TO THE GENE SET (TRANSCRIPTOM) AND GENOME 

6. BIOLOGICAL REPLICATES (MIN 3) - MORE REPLICATES THAN DEPTH 

7. 10-20M MAPPED READS PER SAMPLE - MEAN READ DEPTH 10 PER TRANSCRIPT 

8. NOISE THRESHOLD AND REDUCTION 

9. PILOT SEQUENCING EXPERIMENTS > DE NOVO ASSEMBLY
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Sample preparation 
RNA extraction 
Cleaning (e.g. remove ribosomal RNA)

Library Prep

QC and QF 
Mapping (genome / transcriptome) 
Count Tables (raw counts)

Data Analysis

Sample Design
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Quantity and Quality of RNA

RNA analysis by agarose gel electrophoresis. Lanes 1 and 2 are examples of intact RNA with a 
28S:18S rRNA ratio of approximately 2:1. Lane 3 is an example of degraded RNA with RNA 
smeaing below the 28S and 18S RNA bands. Lane 4 is an example of RNA degradation resulting 
in the loss of the 28S rRNA band and an accumulation of degraded RNA near the bottom of the 
gel. Lane 5 is an example of RNA with significant genomic DNA (gDNA) contamination. 

Source: Wieczorek et al. Promega Corporation
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RNA ➜ Total RNA
DNA

mRNA, polyA RNA, polysomal RNA, tRNA, 
ribosomal RNA, lincRNA, miRNA, piRNA, siRNA, 
SRP RNA, tmRNA, snRNA, snoRNA, SmY RNA, 
scaRNA, gRNA, aRNA, crRNA, tasiRNA, rasiRNA, 
7SK RNA
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?
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ADH1A Gene Expression

www.gtexportal.org
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ADH1A encodes a member of the alcohol dehydrogenase family. The encoded 
protein is the alpha subunit of class I alcohol dehydrogenase, which consists of 
several homo- and heterodimers of alpha, beta and gamma subunits. Alcohol 
dehydrogenases catalyze the oxidation of alcohols to aldehydes. This gene is 
active in the liver in early fetal life but only weakly active in adult liver. This 
gene is found in a cluster with six additional alcohol dehydrogenase genes, 
including those encoding the beta and gamma subunits, on the long arm of 
chromosome 4. Mutations in this gene may contribute to variation in certain 
personality traits and substance dependence.
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Single-cell RNA sequencing (scRNA-seq)
Single-cell isolation techniques: 
a The limiting dilution method isolates individual 
cells, leveraging the statistical distribution of 
diluted cells. b Micromanipulation involves 
collecting single cells using microscope-guided 
capillary pipettes. c FACS isolates highly purified 
single cells by tagging cells with fluorescent marker 
proteins. d Laser capture microdissection (LCM) 
utilizes a laser system aided by a computer system 
to isolate cells from solid samples. e Microfluidic 
technology for single-cell isolation requires 
nanoliter-sized volumes. An example of in-house 
microdroplet-based microfluidics (e.g., Drop-Seq). f 
The CellSearch system enumerates CTCs from 
patient blood samples by using a magnet 
conjugated with CTC binding antibodies. g A 
schematic example of droplet-based library 
generation. Libraries for scRNA-seq are typically 
generated via cell lysis, reverse transcription into 
first-strand cDNA using uniquely barcoded beads, 
second-strand synthesis, and cDNA amplification. 

Source: Lee and Bang (2019) Single-cell RNA sequencing 
technologies and bioinformatics pipelines. Experimental & 
Molecular Medicine 50
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For transcriptome-based studies, RNA-seq libraries are 
generated by the synthesis of double stranded cDNA followed by 
the addition of sequencing adapters. This method however, does 
not retain any information about the DNA strand from which the 
RNA was transcribed. It is often desirable to create libraries 
that retain the strand orientation of the original RNA 
targets. For example, in some cases transcription creates anti-
sense RNA constructs that may play a role in regulating gene 
expression.

Head et al. (2014). Library construction for next-generation sequencing: Overviews and challenges. 
BioTechniques, 56(2).
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Sample preparation 
RNA extraction 
Cleaning (e.g. remove ribosomal RNA)

Library Prep

QC and QF 
Mapping (genome / transcriptome) 
Count Tables (raw counts)

Data Analysis

Sample Design
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Whole-Transcriptome Sequencing
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Poly(A) RNA
5’ (AAAAAAAAAAAAA)3’

mRNA

The poly-A tail is a long chain of adenine nucleotides that is added to a 
messenger RNA (mRNA) molecule during RNA processing to increase 
the stability of the molecule. Additionally, the poly-A tail allows the 
mature messenger RNA molecule to be exported from the nucleus and 
translated into a protein by ribosomes in the cytoplasm. 

Source: Scitable by Nature Education
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5’ (AAAAAAAAAAAAA)3’
(TTTTTTTT)3’

5’Reverse Transcription

Poly(A) RNA

A reverse transcriptase is an enzyme used to generate 
complementary DNA from an RNA template.
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5’ (AAAAAAAAAAAAA)3’
(TTTTTTTT)3’

5’

removal of RNA
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(TTTTTTTT)3’

5’

Reverse Transcription

5’

3’

“random” priming
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Double-stranded cDNA library
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Library Amplification for Multiplexing

Illumina index

Illumina index

Possible Bias: 
•over-representation of transcript end 
•non-random starting point 
•short fragments are prefered
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Direct RNA Sequencing Kit

ONT 
Input requirement: 500 ng RNA 

Preparation time: 110 min
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Sample preparation 
RNA extraction 
Cleaning (e.g. remove ribosomal RNA)

Library Prep 
Illumina paired-end sequencing

QC and QF 
Mapping (genome / transcriptome) 
Count Tables (raw counts)

Data Analysis

Sample Design
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RNA-Seq Data 

Quality
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Sigurgeirsson et al. (2014) found than more than half of the genes were 
differentially expressed due to in vitro RNA degradation.

Wang L, Nie J, Sicotte H, et al. (2016 ) Measure transcript integrity using RNA-seq 
data. BMC Bioinformatics. 

Sigurgeirsson B, Emanuelsson O, Lundeberg J. (2014) Sequencing degraded RNA 
addressed by 3′ tag counting. PLoS One. 
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Example output:
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PCA plots of RNA-seq data show the characteristics of samples according 
to gene expression (FPKM) levels (left) and RNA quality (TIN score).

The gene expression PCA plot provides a map 
of the distances between samples from which 
the characteristics of RNA-seq data can be 
inferred.

The transcript integrity number (TIN) score PCA 
plot can infer the quality (not the sequencing 
quality) of RNA-seq data, which can effectively 
discriminate low-quality samples.

Source: Son et al. (2018). A Simple Guideline to Assess the Characteristics of RNA-Seq Data. BioMed research international.
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Boxplot indicates the RNA quality of 
samples according to the TIN scores. A 
thick line (black) within the box marks the 
mean. 

Source: Son et al. (2018). A Simple Guideline to Assess the Characteristics of RNA-Seq Data. BioMed research international.
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Genome browser snapshots of mapped read densities are shown using 
integrative genomics viewer (IGV). FPKM, fragments per kilobase of 
transcript per million mapped reads.

Source: Son et al. (2018). A Simple Guideline to Assess the Characteristics of RNA-Seq Data. BioMed research international.
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RNA-Seq Data 

Filtering
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‣ Adaptor sequences (trim or remove) 

‣ Non-mRNA (e.g. SSU rRNA) 

‣ Low complexity sequences 

‣ Contamination
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RNA-Seq Read 

Mapping
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Reads Genome
Mapping

Transcriptome

Mapping Assembling

SR

PE

SR

PE
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Program Mapping
BWA unspliced

TopHat2 spliced
HISAT2 spliced
STAR spliced

Kallisto pseudo-alignment
Salmon pseudo-alignment
Sailfish pseudo-alignment

based on Costa-Silva et al. (2017) PLOS ONE
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Gene A

Gene A

20 reads

10 reads

Gene B

15 reads

Gene B

10 reads

20×1.5= 30→ 30
10

= 3 15×1.5= 22.5→ 22.7
7

= 3.2

10×1.5= 15→ 15
10

= 1.5 10×1.5= 15→ 15
7
= 2.1

Traget Length
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Gene A

Gene A

Gene A

Gene A
X X

Mapping Quality

Gene B

Gene C

Gene A
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Gene A

20 reads

20×1.5= 30→ 30
10

= 3

Gene A

20 reads

20×1.5= 30→ 30
10

= 3

Gene A

20 reads

20×1.5= 30→ 30
10

= 3

Traget Coverage
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Pseudo-Alignment

(a) An example of a read (in black) and three overlapping transcripts 
with exonic regions as shown. 

(b) An index is constructed by creating the transcriptome de Bruijn 
Graph (T-DBG) where nodes (v1, v2, v3, ... ) are k-mers, each transcript 
corresponds to a colored path as shown and the path cover of the 
transcriptome induces a k-compatibility class for each k-mer. 

(c) Conceptually, the k-mers of a read are hashed (black nodes) to find 
the k-compatibility class of a read. 

(d) Skipping (black dashed lines) uses the information stored in the T-
DBG to skip k-mers that are redundant because they have the same 
k-compatibility class. 

(e) The k-compatibility class of the read is determined by taking the 
intersection of the k-compatibility classes of its constituent k-mers.

Source: Bray et al. (2016) Near-optimal probabilistic RNA-seq quantification. Nature Biotechnology.
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Sample preparation 
RNA extraction 
Cleaning (e.g. remove ribosomal RNA)

Library Prep 
Illumina paired-end sequencing

QC and QF 
Mapping (genome / transcriptome) 
Count Tables (raw counts)

Data Analysis

Sample Design
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RNA-Seq data is … 

(a) compositional (multiple parts of non-negative numbers). 

(b) high dimensional (many variables/genes)  

       and underdetermined (the number of genes is much greater than the number of samples). 

(c) overdispersed (variance of the counts of read is larger than expected). 

(d) often spares with many zeros (zero-inflated).
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Subsamples:

Sequencing Depths

N=1   ➜ n=1 n=0 
N=5   ➜ n=5 n=0 
N=10 ➜ n=8 n=2

N=1   ➜ n=0 n=1 
N=5   ➜ n=2 n=1 
N=10 ➜ n=8 n=2

Sequencing depth & Compsitionality - Technical variation during sequencing results in varying 

sequencing depths. To reduce/remove sequencing depth variation, counts should be normalized. As a 

result, we are dealing with compositional rather than absolute data.
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Poisson distributed variables with different means, scaled to mean = 100  

lambda = 100
scaled by 1

lambda = 1000
scaled by 0.1

lambda = 10
scaled by 10
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Sparsity - RNA-Seq data is zero-rich. While log-ratios (network inference  

in gneral) can be used to tackle compositionality it is sensitive to zeros (i.e. negative 

infinities). Pseudocounts could resolve the issue but might impact the results as they 

alter the covariance structure of data. Alternive treatments of zeros have been 

proposed but are problematic since zeros could indicate absence or undersampling. 

set.seed(200617)
x1 <- sort(sample(1:100, 10, replace = TRUE), TRUE)
y1 <- sort(sample(1:100, 10, replace = TRUE), TRUE)
cor(x1,y1)
# 0.883
x2 <- sample(1:100, 10, replace = TRUE)
y2 <- sample(1:100, 10, replace = TRUE)
cor(x2,y2)
# 0.466
x3 <- c(x2, rep(0,20))
y3 <- c(y2, rep(0,20))
cor(x3,y3)
# 0.790
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easyRNASeq 

DEGseq 

DESeq / DESeq2 

NOISeq 

edgeR 

baySeq
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Gene 
Co-Expression 
Networks
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Example of a co-expression network analysis. First, pairwise correlation is determined for each possible gene pair in the expression data. These pairwise correlations can 
then be represented as a network. Modules within these networks are defined using clustering analysis. The network and modules can be interrogated to identify regulators, 
functional enrichment and hub genes. Differential co-expression analysis can be used to identify modules that behave differently under different conditions. Potential disease 
genes can be identified using a guilt-by-association (GBA) approach that highlights genes that are co-expressed with multiple disease genes.
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“Ideally, biological validation of gene function uses independent biological 
samples to confirm the up- or down-regulation of genes in response to a 
given treatment or condition of interest. Therefore, although we did not 
include studies that relied solely on qPCR in our survey of transcriptomics, the 
use of qPCR for confirmation of the expression of genes of interest is 
essential.”
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Question 
Start with a precises scientific question.1

A Quick Recap

2

3

Gather Knowledge 
What do you know, what do you have 

and what would you still need?  

Design 
Think carfully about the desing and do not just use 
the newest technology or cheapest solution. 

4Pilots 
A few well designed tests might be a 

good investment.    

5 Replicates 
Always use biological replicates. 


