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Next-generation sequencing (NGS) techniques have been used to generate variousmolecularmaps including genomes, epigenomes,
and transcriptomes. Transcriptomes from a given cell population can be profiled via RNA-seq. However, there is no simple way
to assess the characteristics of RNA-seq data systematically. In this study, we provide a simple method that can intuitively evaluate
RNA-seq data using two different principal component analysis (PCA) plots. The gene expression PCA plot provides insights into
the association between samples, while the transcript integrity number (TIN) score plot provides a quality map of given RNA-seq
data. With this approach, we found that RNA-seq datasets deposited in public repositories often contain a few low-quality RNA-seq
data that can lead tomisinterpretations.The effect of sampling errors for differentially expressed gene (DEG) analysis was evaluated
with ten RNA-seq data from invasive ductal carcinoma tissues and three RNA-seq data from adjacent normal tissues taken from a
Korean breast cancer patient.The evaluation demonstrated that sampling errors, which select samples that do not represent a given
population, can lead to different interpretations when conducting the DEG analysis. Therefore, the proposed approach can be used
to avoid sampling errors prior to RNA-seq data analysis.

1. Introduction

Recent advances in DNA sequencing technology led by next-
generation sequencing (NGS) have been generating various
molecular maps, including genomes, transcriptomes, and
epigenomes [1–3]. Among them, NGS-based transcriptomic
data called RNA-seq (or expression profiling by high
throughput sequencing) is one of the most abundant data
types according to statistics from the gene expression
omnibus database (https://www.ncbi.nlm.nih.gov/geo/sum-
mary/?type=series) [4]. Since all living cells contain RNAs as
messengers to convey protein-coding information fromDNA
to proteins or as a functional player such as noncoding RNAs,
RNA-seq has become a major research tool for profiling
various RNAs in many research fields. Technically, RNA-seq
is based on sequenced reads from an NGS instrument [5].

Although researchers routinely check the sequencing quality
of RNA-seq data using bioinformatics tools such as FastQC
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/),
it does not reflect the true quality (e.g., RNA quality) of RNA-
seq data. In addition, no more than two or three biological
replicates are generally used as representative samples for
a population of a given condition (e.g., a disease), due to
the high cost of RNA-seq or difficulty obtaining samples.
This means that individual RNA-seq data will greatly affect
the outcome. Potential sampling errors can be avoided by
carefully examining RNA-seq data prior to downstream
analysis such as differentially expressed gene (DEG) analysis.
Here, we proposed a simple approach that provides a
systematic view of a given RNA-seq dataset using two
different principal component analysis (PCA) plots. The
gene expression PCA plot provides a map of the distances
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between samples from which the characteristics of RNA-seq
data can be inferred. However, the transcript integrity
number (TIN) score [6] PCA plot can infer the quality
(not the sequencing quality) of RNA-seq data, which can
effectively discriminate low-quality samples. We proved
method’s usefulness by evaluating the RNA-seq data of ten
invasive ductal carcinoma and three adjacent normal tissues
biopsied from a Korean patient with breast cancer. Our
approach clearly distinguished RNA-seq data according to
gene expression levels and RNA qualities. The evaluation
regarding the effect of incorporating a low-quality sample
or a sample from a spatially distinct region on identifying
differentially expressed genes (DEGs) showed that selecting
the correct RNA-seq data to represent a population for a given
condition significantly affected the identification of DEGs.

2. Materials and Methods

2.1. RNA-Seq Data Analysis. We had previously conducted
RNA-seq with one tissue of invasive ductal carcinoma
(luminal B subtype) from breast tissue and a correspond-
ing adjacent normal tissue biopsied from a Korean breast
cancer patient with informed consent. The data has been
deposited under the gene expression omnibus (GEO) acces-
sion number GSE110114. We used this RNA-seq dataset to
evaluate the impact of RNA quality and sample variations
to identify differentially expressed genes (DEGs) in this
study. The RNA-seq dataset was downloaded and processed
using the Octopus-toolkit (version 2.1.0) [7]. Briefly, low-
quality portions of paired-end reads were trimmed using
Trimmomatic (version 0.36) [8]. The trimmed reads were
mapped to the human reference genome (hg38 assembly)
using STAR (version 2.5.1) [9]. The quality of the RNA-seq
data was measured using the transcript integrity number
(TIN) score calculated by RSeQC (version 2.6.4; tin.py)
(http://rseqc.sourceforge.net/#tin-py) [10]. The abundances
of whole genes (GENCODE comprehensive gene annotation,
version 27; https://www.gencodegenes.org/releases/current
.html) were estimated using Cuffnorm in the Cufflink appli-
cation (version 2.2.1) [11]. The fragments per kilobase of
transcript per million mapped reads (FPKM) values were
used to compare gene’s expression levels. Cuffdiff in the
Cufflink programwas used to identify differentially expressed
genes.

2.2. Principal Component Analysis Plot. Principal component
analysis (PCA) plots were generated using the ggfortify
package in R (https://github.com/sinhrks/ggfortify) [12] with
FPKM values or TIN scores. The following command was
used: autoplot(prcomp(DATA), label=TRUE, label.size=3).

2.3. Gene Ontology Analysis and Box Plots. Gene ontology
(GO) analysis was performed using Metascape (http://meta-
scape.org/) [13]. Box plotswere generated using BoxPlotR [14].

3. Results

3.1. Systematic Evaluation of RNA-Seq Data. Although the
RNA-seq technique has become a main research tool to

quantify the expression levels of whole genes, researchers
often do not assess the quality of RNA-seq data in detail.
In fact, many studies do not determine the genuine quality
(not the sequencing quality) of their RNA-seq data in depth,
which could lead to the misinterpretation of results. In this
study, we proposed a simple method that can assess the
characteristics of RNA-seq data with mapped read files (i.e.,
BAM files). This approach used two estimated units, FPKM
(or RPKM) and TIN score, which could be calculated easily
using available applications such as Cufflinks [15] and RSeQC
[10], respectively. A FPKM value [16] and TIN score [6] for
a given transcript reflect expression level and RNA integrity,
respectively. Therefore, the characteristics of a given RNA-
seq data set can be visualized using principal component
analysis (PCA) with these units. We proved the usefulness
of the proposed approach by performing RNA-seq with 10
and 3 samples, respectively, obtained from invasive ductal
carcinoma tissue (labeled C) and adjacent normal (labeled
N) tissue of a Korean patient (GSE110114). Theoretically, the
transcriptomes of cancer samples (or normal samples) in the
dataset should be very similar since they were segmented
from a single tissue and an expert conducted RNA-seq
experiments at the same time.The characteristics of RNA-seq
data were determined using the gene expression (FPKM) and
RNA quality (TIN score) PCA plots (Figure 1(a)). Surpris-
ingly, the results showed that the RNA-seq data of some of the
samples were dissimilar to the other samples within the same
group (cancer or normal), which indicated either differential
RNA-seq quality or heterogeneous transcriptomes due to the
different cell populations (Figure 1(a)). For example, the C0
sample was located far from the other cancer samples in the
gene expression PCA plot, which suggested that this sample
was from a spatially distinct region compared to the other
cancer samples. The RNA-seq quality of the C0 sample was
good, as it was positioned near the cancer sample cluster in
the RNA quality PCA plot (Figure 1(a)). However, the C3
sample was located slightly outside of the cancer cluster in
the gene expression PCA plot, while it was positioned far
from the cancer cluster in the RNA quality PCA plot. The
boxplot showing the TIN scores of samples also indicated
that the C3 sample was of low quality (Figure 1(b)). Genome
browser snapshots of mapped reads on two housekeeping
genes,GAPDH andACTB, also confirmed that the C3 sample
was distinct from the other samples (Figure 1(c)). In the case
of normal samples, the N1 sample was the highest quality,
while the N2 and N3 samples were of moderate quality, as
shown in the RNAquality PCA plot and boxplot (Figures 1(a)
and 1(b)). Interestingly, theN3 samplewas located close to the
cancer cluster in the gene expression PCA plot, even though
it was from adjacent normal tissue. This suggests that the
majority of the transcriptomes in the N3 sample potentially
came from the cancer cell population. Overall, we proposed
a simple method to assess RNA-seq data in depth using the
gene expression and TIN score PCA plots.

3.2. �e Effect of Unintended Sampling for Differentially
Expressed Gene Analysis. One of the main purposes of con-
ducting RNA-seq is to identify differentially expressed genes
(DEGs) between given groups, which relies on statistical
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Figure 1: Systematic evaluation of RNA-seq data. (a) PCA plots of RNA-seq data show the characteristics of samples according to gene
expression (FPKM) levels (left) and RNA quality (TIN score). Each dot indicates a sample. (b) Boxplot indicates the RNA quality of samples
according to the TIN scores. A thick line (black) within the box marks the mean. (c) Genome browser snapshots of mapped read densities
are shown using integrative genomics viewer (IGV). FPKM, fragments per kilobase of transcript per million mapped reads; TIN, transcript
integrity number.

significance such as a false-discovery rate (FDR)-adjusted p
value cutoff.Then, several downstream analyses such as gene
ontology (GO) and network analysis are conducted to select
the final gene set among identified DEGs. DEGs are generally
defined as the genes that show FDR-adjusted p values less
than a cutoff such as 0.05. We evaluated the effect of incor-
porating unintended samples that showed different RNA-seq
qualities for DEG analysis. For this, all possible combinations
of three cancer samples (or two cancer samples) were set as
a cancer group and compared with three normal samples (or
two normal samples: N1 and N2) using Cuffdiff with differ-
ent FDR-adjusted p values (0.1, 0.05, and 0.01). The result

showed that sampling error was critical for DEG analysis
(Figure 2). For example, when a low RNA-quality sample
(C3) was included to identify DEGs, the number of up- and
downregulated DEGs was substantially decreased compared
to other combinations. Interestingly, when theC0 sample that
seemed to contain different populations of cells compared
to the other cancer samples (Figure 1(a)) was included, the
number of DEGs was substantially reduced. In general, the
more samples that were used, the less variation was observed
in the number of DEGs, even with low-quality or spatially
distinct samples. The result was not substantially altered with
different FDR-adjusted p value cutoffs (0.1, 0.05, and 0.01)
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Figure 2: Single sample inclusion assessment for the identification of differentially expressed genes. All possible three (top panel) or two
(bottom panel) cancer RNA-seq data combinations were used to identify differentially expressed genes. The x-axis shows the number of
identified differentially expressed genes (DEGs) and the y-axis indicates the RNA-seq sample included in all possible combinations. The box
plots show the number of DEGs identified in a given comparison setting. Centerlines show the medians and box limits indicate the 25th and
75th percentiles, as determined by R software; the whiskers extend 1.5 times the interquartile range from the 25th and 75th percentiles. The
top panel has n = 36 sample points and the bottom panel has n = 9 sample points.

(Figure 2). Next, we tested whether the sampling error could
lead to a different interpretation of DEGs according to gene
ontology analysis. The top 300 up- and downregulated genes
were analyzed using Metascape [13] and visualized using
heatmaps (Figure 3). The majority of top 300 upregulated
DEGs in any given combination of two cancer RNA-seq data

were associated with the adaptive immune response pathway
(Figure 3). However, when a low-quality sample (C3) was
incorporated as a representative sample of cancer tissue, the
genes involved in nuclear division were also significantly
enriched, which was not observed in the other cancer sets.
Similarly, when a spatially distinct cancer sample (C0) or a
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Figure 4: Systematic assessment of RNA-seq data. (a) PCAplots show the characteristicsof islet single cell RNA-seq data (n = 36) treatedwith
Artemether (GSE84714) using gene expression levels and RNA qualities. (b) PCA plots unveil the characteristics of breast cancer RNA-seq
data (n = 563, 549 single cells and 14 bulk tumor cells) from 11 patients (GSE75688). IGV snapshots show the patterns of mapped reads on
the GAPDH and ACTB genes (right panel). The proportion of variance explained is indicated in parentheses.

low-quality sample (C3) was included as a representative of
cancer tissue, the majority of top 300 downregulated genes
were involved in ECM-associated proteins, whereas the other
sample combinations showed that peroxisome proliferator-
activated receptor (PPAR) signaling and/or cornification
pathways were significantly downregulated in cancer tissues
compared to adjacent normal tissues. Overall, the results
showed that incorporating low-quality RNA-seq data could
affect the interpretation of the RNA-seq data analysis.

3.3. �e Quality Assessment of Publicly Available RNA-Seq
Datasets. Since the quality of RNA-seq data can vary, we
wondered whether the quality of publicly available RNA-seq
datasets was acceptable according to the gene expression and
TIN score PCA plots. The first RNA-seq dataset we evalu-
ated contained 36 single-cell transcriptomes of Artemether-
treated human pancreatic islets from one donor profiled by
single-cell RNA-seq (scRNA-seq) technique [17]. The gene
expression PCA plot mainly distinguished three cell types:
alpha, beta, and acinar types (Figure 4(a)). The TIN score
PCA plot classified cells into three clusters. Manual inves-
tigation of the housekeeping gene loci revealed that three
single-cell transcriptomes were of low quality (Figure 4(a)).
The second RNA-seq dataset we evaluated consisted of 563
RNA-seq data (549 single cells and 14 bulk tumor cells)
performed with cells from 11 breast cancer patients [18].
The gene expression PCA plot showed that these single cell
transcriptomes formed clusters according to their molecular
subtypes: triple-negative breast cancer (TNBC), estrogen
receptor positive (ER+), human epidermal growth factor
receptor 2 positive (HER2+), and mixed types (Figure 4(b)).

We also found some low-quality RNA-seq data, as shown
in the TIN score PCA plot and genome browser snapshots
of mapped reads on the housekeeping genes (Figure 4(b)).
The third RNA-seq dataset contained 20 peripheral blood
mononuclear cell (PBMC) RNA-seq data performed with
samples thatwere stored at room temperature for degradation
(0, 12, 24, 48, and 84 hours prior to RNA extraction) [19]. We
found that one sample (PBMCs from individual 2 that were
stored at room temperature for 84 hours) was of the lowest
RNAquality (Figures 5(a) and 5(b)) and TIN scores were well
correlated with the degree of RNA degradation as previously
reported [6]. However, the patterns of mapped reads on the
housekeeping genes in the sample were almost identical to
other samples (Figure 5(c)), suggesting that manual investi-
gation of the housekeeping gene loci alone is not sufficient to
estimate RNA quality. In sum, the characteristics of a given
RNA-seq data set can be evaluated using the combination of
a gene expression PCA plot, an RNA quality PCA plot, and
manual investigation of some housekeeping genes as shown
in this study. For a study with a small number of samples per
condition, it is recommended to use the proposed method to
minimize sampling errors in RNA-seq analysis.

4. Discussion

All living cells contain various types of RNA; therefore, most
studies focus on RNA. According to the statistics of the
gene expression omnibus (GEO) database (https://www.ncbi
.nlm.nih.gov/geo/summary/) at the time of writing, 67%
of available data (53,279 datasets by microarray and 17,532
datasets by RNA-seq) were gene expression profiling data.

https://www.ncbi.nlm.nih.gov/geo/summary/
https://www.ncbi.nlm.nih.gov/geo/summary/
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Figure 5: Systematic evaluation of an available RNA-seq dataset. (a) PCAplots of RNA-seq data (n = 20) show the characteristicsof peripheral
blood mononuclear cell (PBMC) samples that were stored unprocessed at room temperature for different time periods (0, 12, 24, 48, and 84
hours). Each dot indicates a sample. The proportion of variance explained is indicated in parentheses. (b) Boxplot indicates the RNA quality
of samples according to the TIN scores. A thick line (black) within the box marks the mean. (c) Genome browser snapshots of mapped read
densities are shown using integrative genomics viewer (IGV).
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Among the gene expression profiling data, the volume of
RNA-seq data is rapidly increasing due to the reduced cost
as well as its higher coverage and the greater resolution
of the transcriptome. However, there are no simple ways
to intuitively assess the characteristics of RNA-seq data.
We sought to resolve this issue by proposing a simple
method that could accurately characterize a given RNA-seq
dataset. Without determining the characteristics of the RNA-
seq data, downstream analysis such as the identification of
differentially expressed genes could be significantly biased.
In general, the majority of RNA-seq data registered in GEO
has two or three biological replicates per condition, which
means that two or three replicates represent a population
for a given condition. In this scenario, if one sample is
of low quality or sampling error occurred, the impact of
incorporating it is significant, as shown in Figures 2 and
3. Therefore, we encourage researchers to perform the fol-
lowing three-step assessment: (i) draw a gene expression
PCA plot to characterize the given RNA-seq data; (ii)
draw a TIN score PCA plot or a TIN score boxplot to
estimate the RNA quality; (iii) manually investigate some
housekeeping gene loci using a genome browser application
such as integrative genomics viewer (IGV) [20]. This simple
approach will provide a systematic view of a given RNA-seq
dataset.

Our simulation for DEG analysis highlights that the
number of DEGs varies greatly when incorporating a low-
quality sample or a sample from a spatially distinct region,
regardless of different FDR-adjusted p value cutoffs. There-
fore, researchers should carefully determine whether a given
RNA-seq could be a representative sample of a population
for a given condition with the proposed PCA plots. Our
evaluation of publicly available RNA-seq data found that a
few low-quality RNA-seq data had been used in original
studies (Figures 4 and 5), although these low-quality RNA-
seq data had not significantly affected the result in the
original study because the number of biological replicates per
conditionwas sufficiently large.However, in studies using two
or three biological replicates per condition, sampling errors
will be critical, leading to the misinterpretation of results.
Therefore, we recommend using the proposed simplemethod
to evaluate RNA-seq data prior to downstream analysis.

5. Conclusions

Theproposed approach can distinguish the low-quality RNA-
seq samples that should be avoided for the RNA-seq data
analysis. Incorporation of low-quality RNA-seq data can lead
to the misinterpretation of results as shown in the present
study.
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