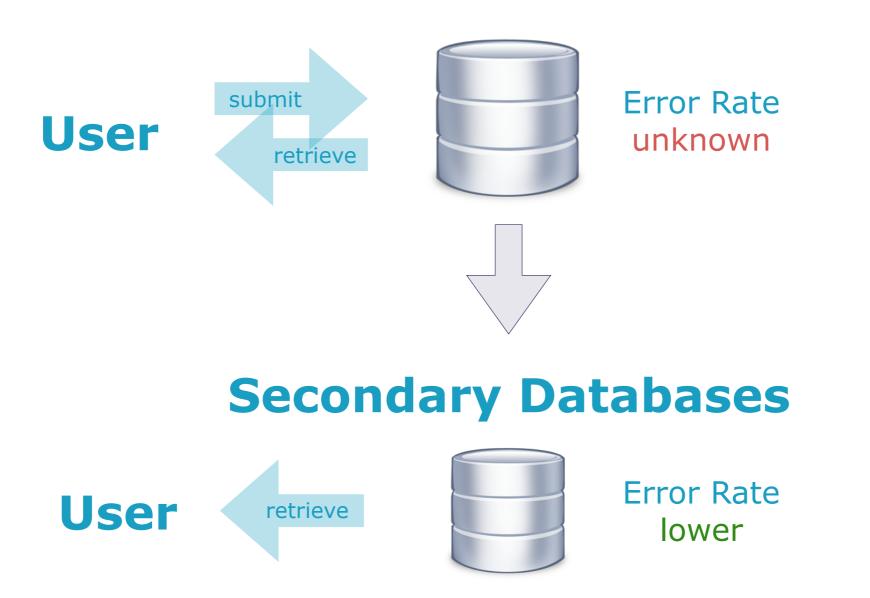
CATECATECATECATECA	
CATGCATGCATGCATGCATGCA	
TGCATGCATGCATGGCATGCA	
"GCATGCATGCATGCATGC∤	
CATGCATGCATGCATGCA	
TGCATGCACTGCATGCATG	
TOCATGCCATGCAATGCA1. LA	TGCATELAT
TGCATGCATGCATGCATGCATG	CATGCATC
GCATGCAGGTTGCATGC	ATGCATG
'GCATGCATGCATGCAT	GCATGCALGLATGCATGCATGC
ATGCATGCATGCATGC	GCATGCATGCATCGCATGCATCGCA
FGCATGCA TGCATGCAT	GCATGCATGCATGCATGCATGCATG
(GCATGCAATGCATGCA1	TGCATGCATGCATGCATGCATGCATG
.TGCATGCATGCATGCATGCAT	TGCATGCATGCATGCATGCATGCATG
ST SCATGCATGCATGCATGCA	TGCATGCATGCATGCATGCATGCAT
AGTTGCATGCATGCATGC*	TCC:TGCATGCCATGCATGCATGCAT
A FOC TO CAT	ATECATGCATGCAATGCAT
ADE MADE.	°CATGCATGCA"
JATCE	CATGCATAA/
aler	GCATGCAT"
60	SCA
	.T


Genetic Diversity: Analysis Seenachice Doctorio (2003) Monday 21, June 2021

CONTRACTOR CONTRACTOR

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Primary Databases

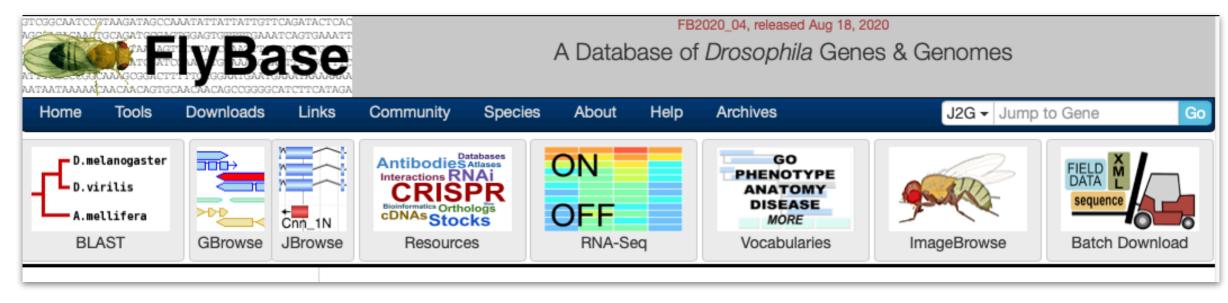
Primary Databases

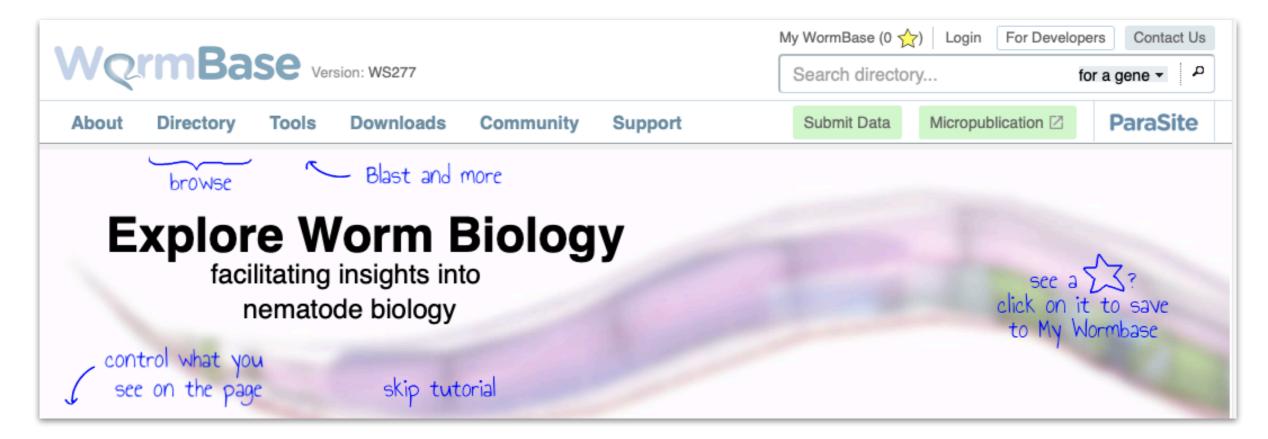
National Center for Biotechnology

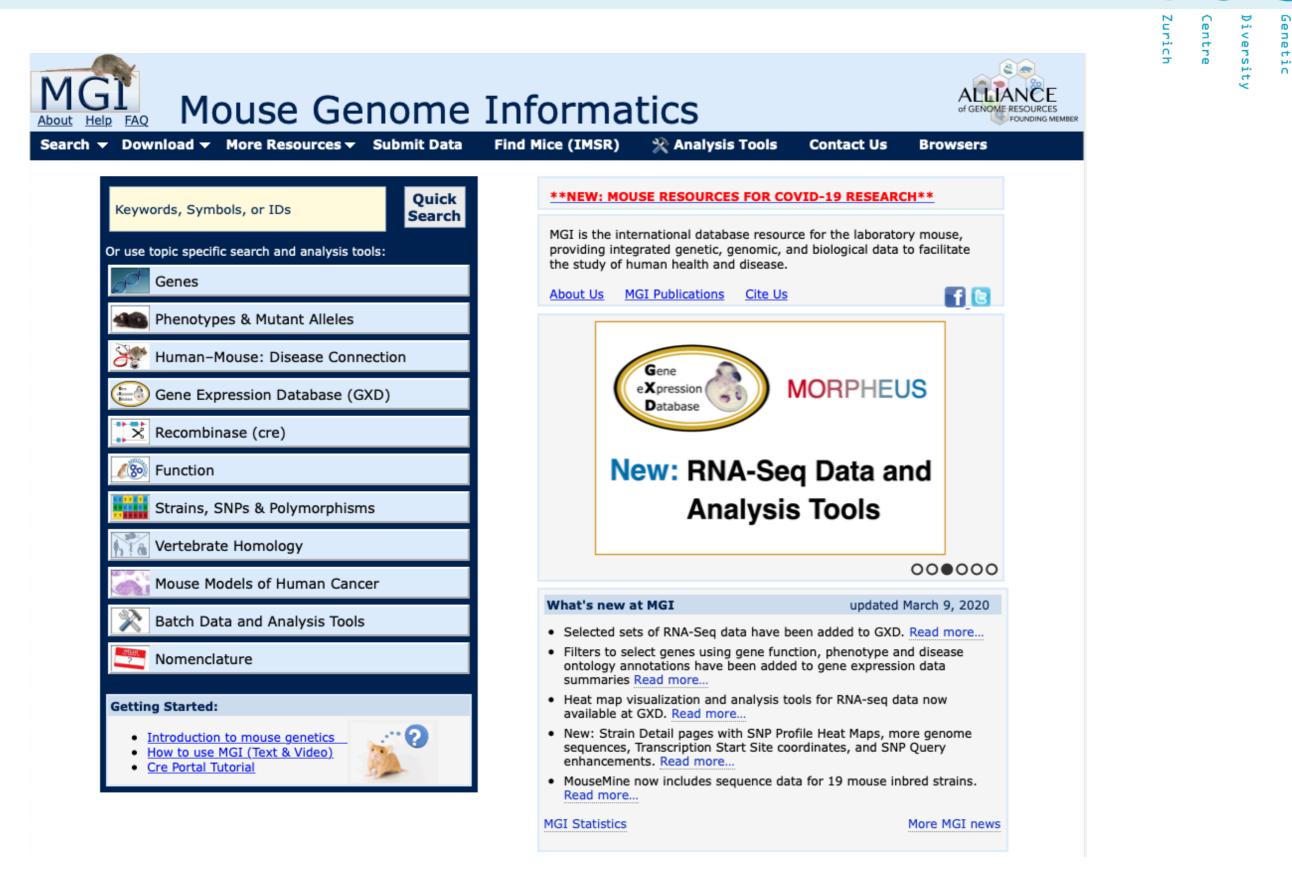
GenBank® : NIH genetic sequence database, an annotated collection of all publicly available DNA sequences. <u>http://www.ncbi.nlm.nih.gov/genbank/</u>

European Nucleotide Archive

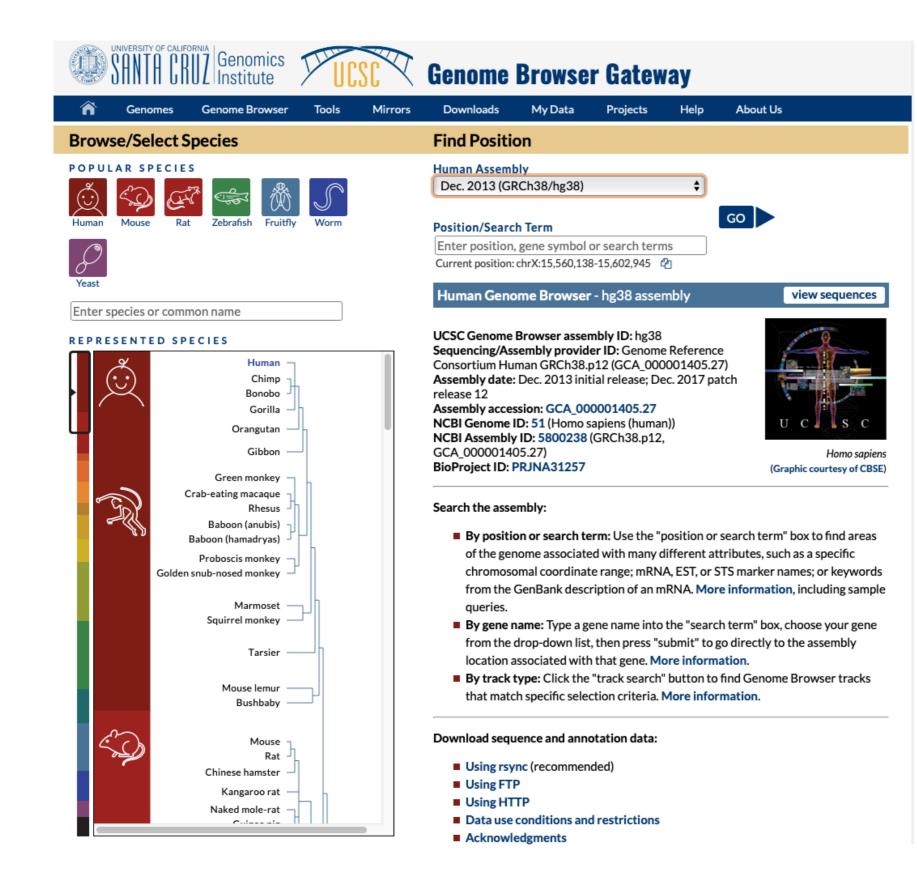
ENA – The European Nucleotide Archive (ENA) captures and presents information relating to experimental workflows that are based around nucleotide sequencing. <u>http://www.ebi.ac.uk/ena/</u>


DDBJ – DNA Data Bank of Japan was established 1986. <u>http://www.ddbj.nig.ac.jp/</u>




INSDC – The International Nucleotide Sequence Databases (INSD) have been developed and maintained collaboratively between DDBJ, ENA, and GenBank for over 18 years. <u>http://insdc.org/</u>

urich



GDC Genetic Diversity Centre Zurich

Login/Register C Ensembl BLAST/BLAT | VEP | Tools | BioMart | Downloads | Help & Docs | Blog Search all species.. Ensembl is a genome browser for vertebrate genomes that supports research in comparative Variant Effect Tools BioMart > BLAST/BLAT > genomics, evolution, sequence variation and Predictor > transcriptional regulation. Ensembl annotate genes, Export custom datasets Search our genomes for All tools computes multiple alignments, predicts regulatory from Ensembl with this your DNA or protein Analyse your own variants function and collects disease data. Ensembl tools data-mining tool sequence and predict the functional include BLAST, BLAT, BioMart and the Variant Effect consequences of known Predictor (VEP) for all supported species. and unknown variants Ensembl Release 101 (August 2020) Update to human GENCODE 35 Search New population frequency data from the Gambian Genome Variation Project for All species New genomes: 8 mammals, 10 birds, 1 reptile, 1 amphibian, 4 fish Go · New sheep reference genome e.g. BRCA2 or rat 5:62797383-63627669 or rs699 or coronary heart disease More release news & on our blog Other news from our blog All genomes Favourite genomes • 06 Oct 2020: Update to the Ensembl COVID-19 resource 🗗 Human -- Select a species --GRCh38.p13 ■ 28 Sep 2020: Retirement of Ensembl Pre! site d • 25 Sep 2020: Cool stuff the Ensembl VEP can Pig breeds Still using GRCh37? do: getting and using allele frequency data ₽ Pig reference genome and 12 additional Mouse breeds GRCm38.p6 View full list of all species Zebrafish GRCz11 **Compare genes** Find SNPs and other Gene expression in Retrieve gene Find a Data Display Use my own data in variants for my gene across species different tissues sequence Ensembl GCCTGACTTCCGG GTRTATACA GGGCTTGTGGCGC CRTRAAAGT GCGCCTCTGCTGC AGGGGACAGATTT CTTCTAAAT CACCTCTGGAGCO PB125-001 GRAACATTT CCCAGTCCAGCG

Zurich Centre iversity Genetic

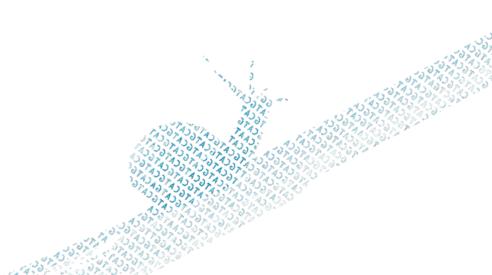
21.06.21 | GDA21 | JCW

Our acknowledgements page includes a list of current and previous funding bodies. How to cite Ensembl in your own publications.

EBI & and our software and data are freely available.

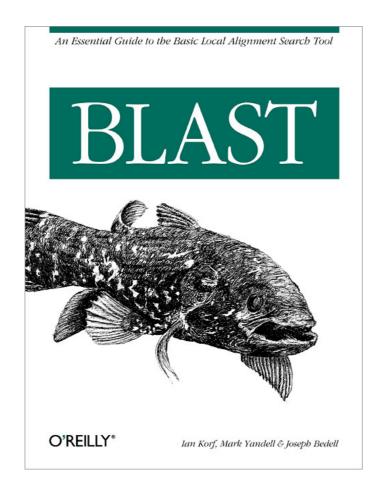
Ensembl creates, integrates and distributes reference datasets and analysis tools that enable genomics. We are based at EMBL-

EMBL-EBI

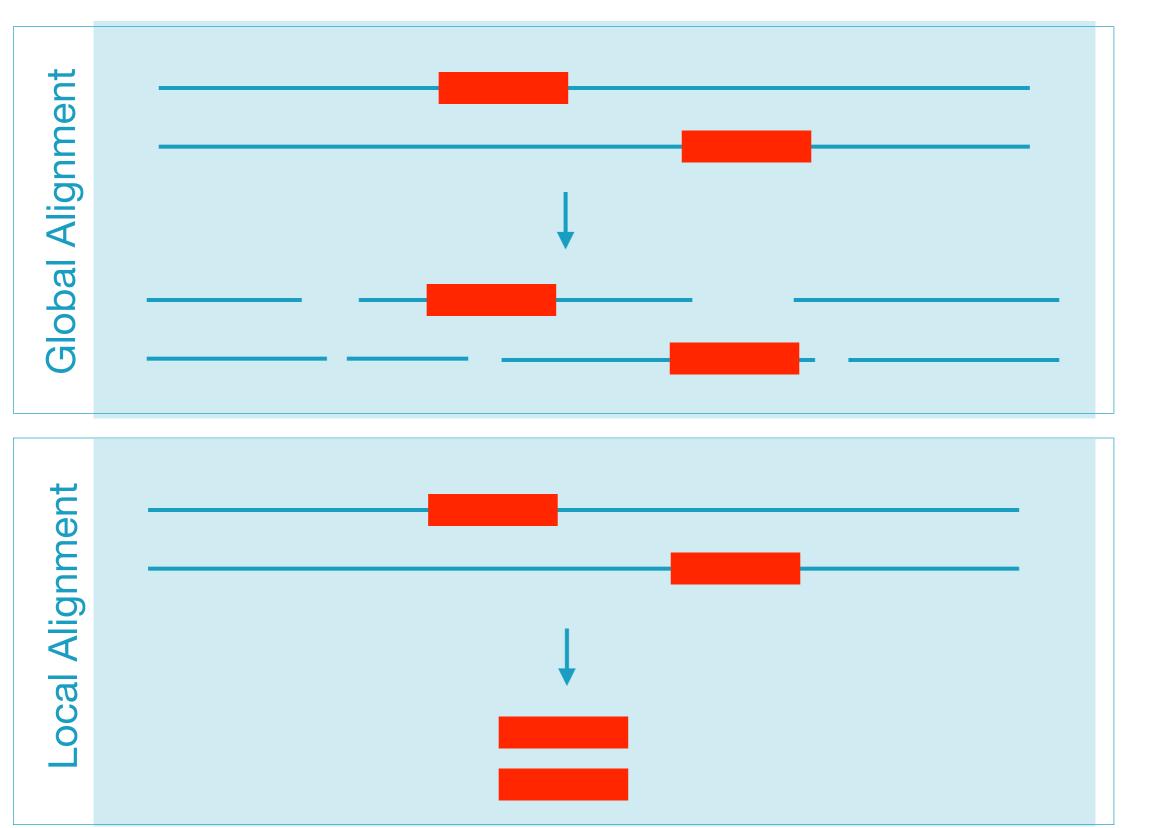


Q

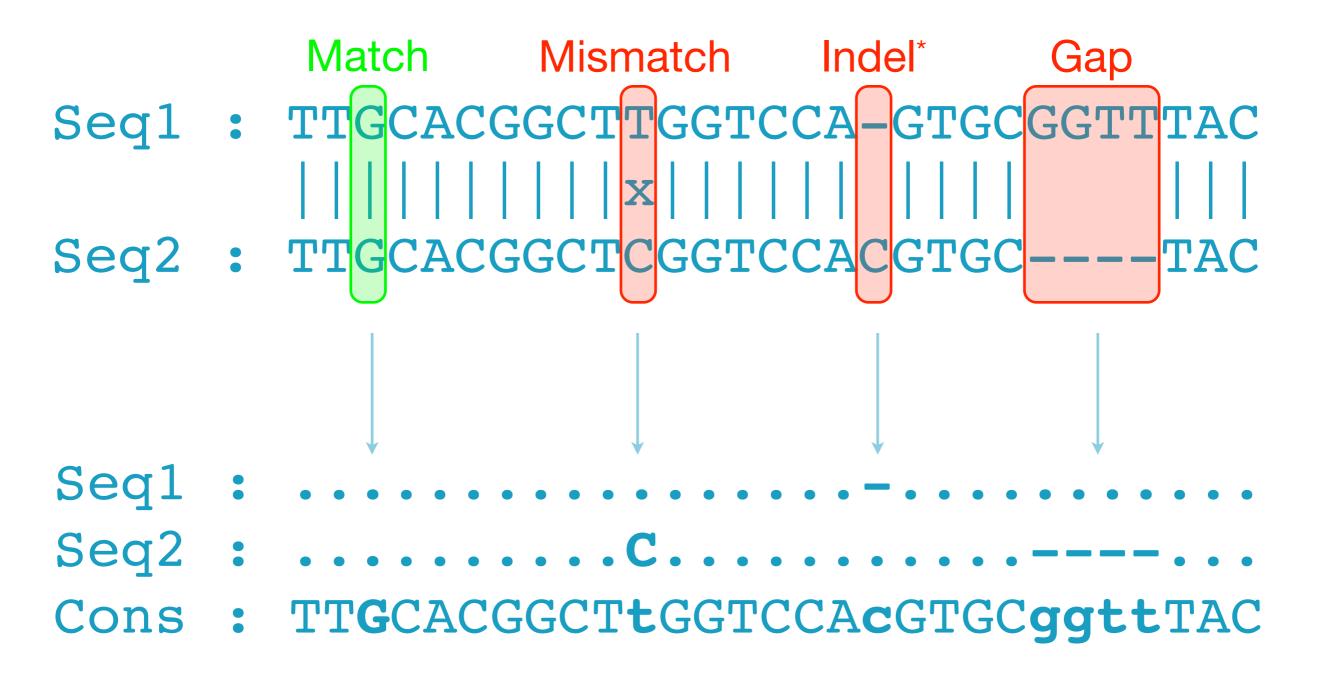
CAIGCAIGCAIGCAIGCA	
CATGCATGCATGCATGCA	
TGCATGCATGCATGGCATGCA	
"GCATGCATGCATGCATGCA	
CATGCATGCATGCATGCAT	
FGCATGCACTGCATGCAT 6	8
TICATGCCATGCAATGCA1.LATG	
TGCATGCATGCATGCATGCA	ATGCAT <i>G</i>
SCATGCAGGTTGCATGCA'	TGCATG
GCATGCATGCATGCATGCATGCATGCATGCATGCATGCAT	CATGCALGCATGCATGCATGC
ATGCATGCATGCATGCG	EATGCATGCATCGCATGCATCGCA
FGCATGCATGCATGCATG	CATGCATGCATGCATGCATGCATG
(GCATGCAATGCATGCATG	CATGCATGCATGCATGCATG
.TG CATGCATGCATGCATGCATG	CATGCATGCATGCATGCATGCATG
ST CONCEPTS CATECATE CATE CATE CATE CATE CATE CATE	SCATGCATGCATGCATGCATGCAT
AGTTGCATGCATGCATGCATG	TOTACATGCCATGCATGCATGCA"
ATGC****GCA*	ATECATGCATGCAATGCAT
ADE TADE.	CATGCATGCA"
LATCE	CATGCATAA/
A161	GCATGCAT"
16 °	SC/
	.Т



Genetic Biversity: Analysis BLAST SCOFCACS Monday 21, June 2021



BLAST is the acronym for "**B**asic Local Alignment Search Tool", which is a **local** alignment search tool first described by Altschul et al. (1990). NCBI started providing sequence alignment service to the public using BLAST in 1992, first through its blast email server (decommissioned in 2002) and later through the web (1997).


BLAST

Authors: I Korf, M Yandell, J Bedell Publisher: O'Reilly Media Release Date: July 2003 Pages: 362

GD Genetic Diversity Centre Zurich

21.06.21 | GDA21 | JCW

* indels: insertions & deletions

Genetic

versit

lurich

entre

BLAST finds the optimal alignment by using the **"word matching" algorithm**, in which BLAST does the search in several distinctive phases: 1) **generating overlapping words** from the input query, 2) scanning the database for **word matches** (hits), and 3) **extending word hits** to produce (local) alignments through multiple steps of extension.

During the first phase, BLAST breaks the input query into short overlapping segments (words/**seeds**). In the second phase BLAST takes those query words and **scans the target database** for initial matches. The nucleotide BLAST algorithm looks for any single exact word match. The protein BLAST algorithm uses a scoring threshold cutoff to identify matches. In addition, protein BLAST algorithm also requires two word hits within a certain distance in order to proceed to the next step.

ATGCGGTCACGTCACG > query sequence

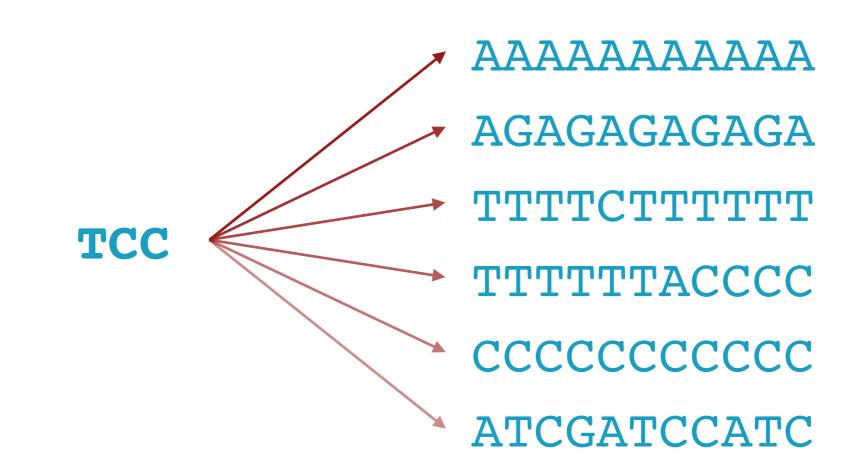
- ATGCG > word 1
 - **TGCGG** > word 2
 - GCGGT > word 3
 - CGGTC > word 4
 - **GGTCA** > word 5

GTCAC > word 6

GD

entre

iversity


Zurich

Genetic

ΑΑΑΑΑΑΑΑΑΑ AGAGAGAGAGA TTTTCTTTTTT TTTTTTACCCC CCCCCCCCCC **ATCGATCCATC**

TCC

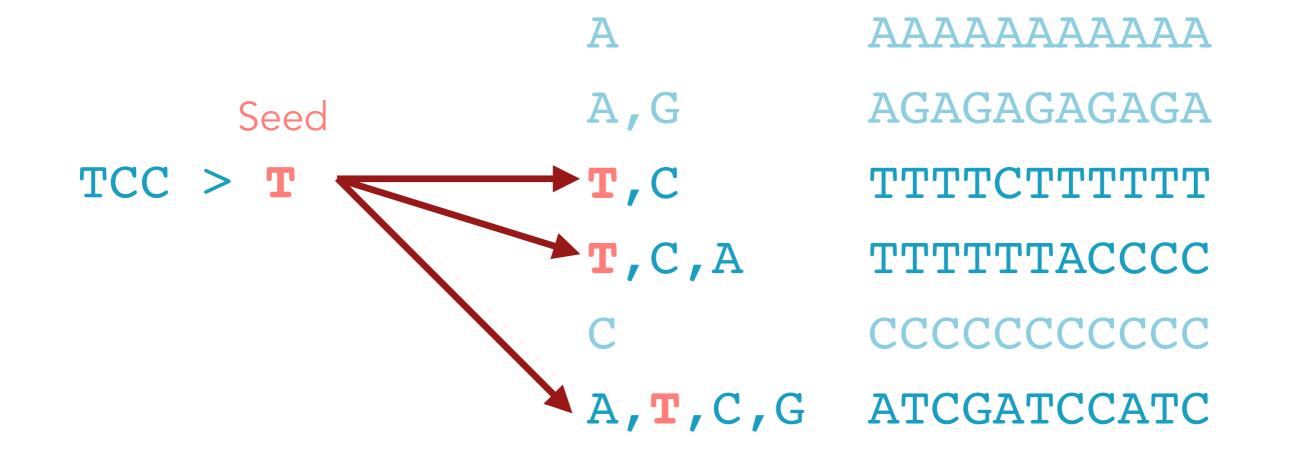
21.06.21 | GDA21 | JCW

GD

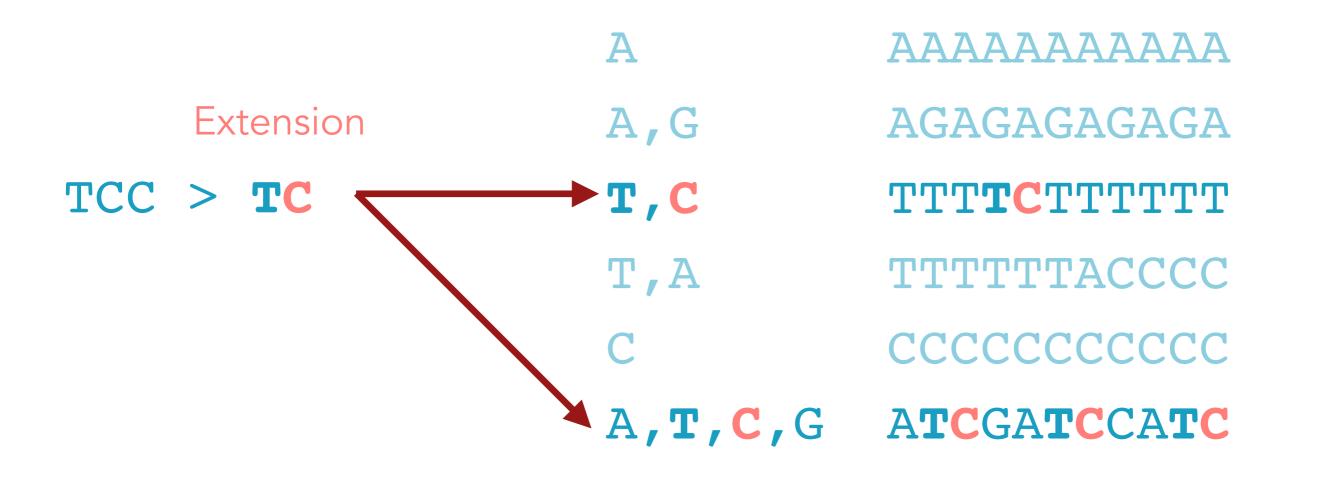
entre

Zurich

Genetic


iversity

Α	AAAAAAAAAAA
A,G	AGAGAGAGAGA
T,C	TTTTCTTTTT
T,C,A	TTTTTTACCCC
C	CCCCCCCCCC
A,T,C,G	ATCGATCCATC


Index



GDC Genetic **GD** Centre Curich

GD

entre

iversity

Zurich

Genetic

Global Alignment

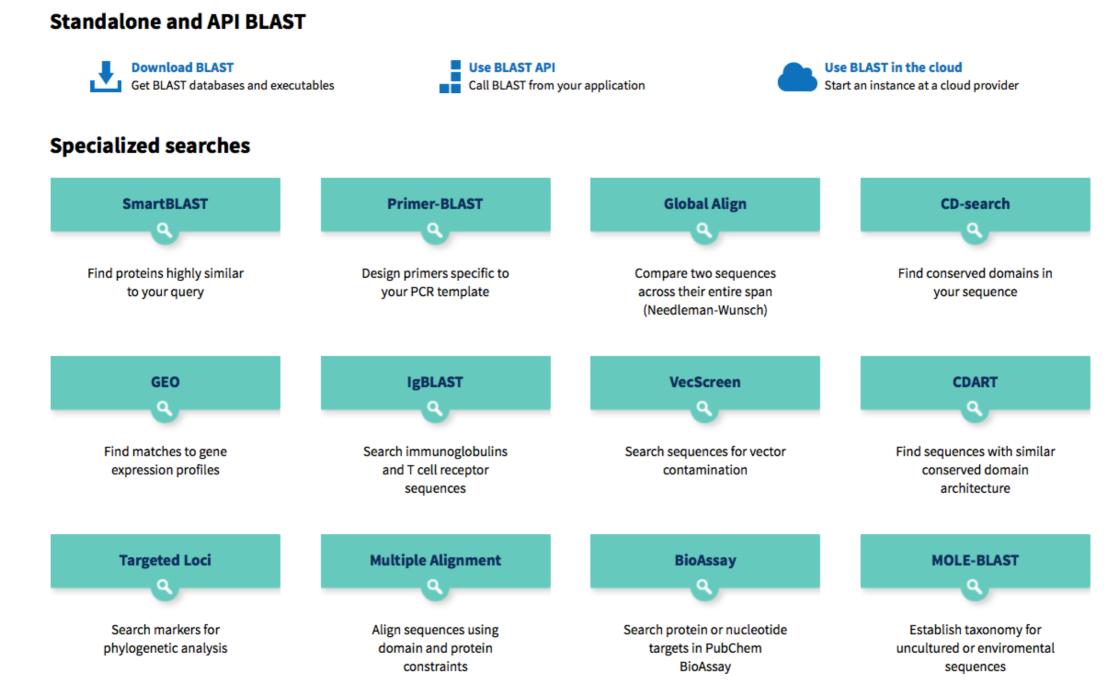
Query > 1 ----TCC--- 11 Gaps > ||| < Matches Subject > 1 ATCGATCCATC 11

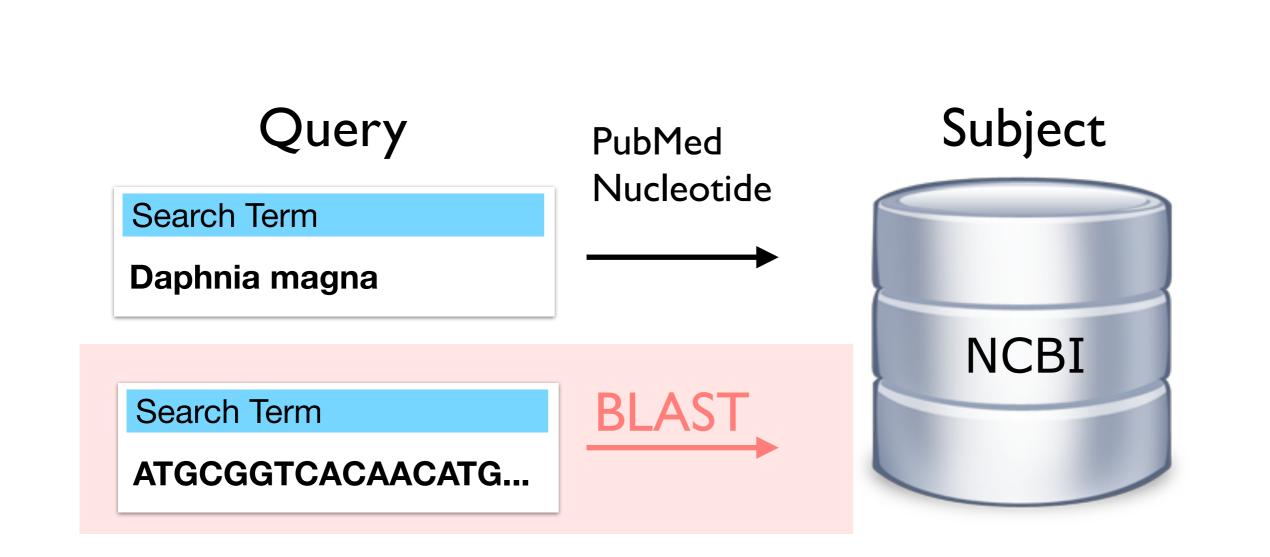
21.06.21 | GDA21 | JCW

Local Alignment

Identities 3/3 (100%)

- Query 1 TCC 3
- Subject 6 TCC 9




All I lational Center for biotechnology Information	Databases ᅌ			Search		
0	Get the latest Get the	COVID-19 is an emerging, rapidly evolvi public health information from CDC: <u>http</u> a latest research from NIH: <u>https://www.r</u> arature, sequence, and clinical content: <u>h</u>	os://www.coronavirus.gov . nih.gov/coronavirus.			
NCBI Home	Welcome to NCBI			Popular Resources		
Resource List (A-Z)	The National Center for Biotechnolo	ogy Information advances science an	d health by providing access to	PubMed		
All Resources	biomedical and genomic informatio		,	Bookshelf		
Chemicals & Bioassays	About the NCBI Mission Organ	nization NCBI News & Blog		PubMed Central		
Data & Software				BLAST		
DNA & RNA	Submit	Download	Learn	Nucleotide		
Domains & Structures	Deposit data or manuscripts	osit data or manuscripts Transfer NCBI data to your		Genome		
Genes & Expression	into NCBI databases	computer	class or watch a tutorial	SNP		
Genetics & Medicine			le la	Gene		
Genomes & Maps	· · ·			Protein		
Homology		· ·		PubChem		
Literature						
Proteins				NCBI News & Blog		
Sequence Analysis	Develop	Analyze	Research	The latest in COVID-19 related human		
Taxonomy	Use NCBI APIs and code	Identify an NCBI tool for your	Explore NCBI research and	gene annotation now in NCBI RefSeq and Gene		
Training & Tutorials	libraries to build applications	data analysis task	collaborative projects	02 Oct 20		
Variation	_			Interested in human dense involved in		
		2.0°C		Oct 14 webinar: Exploring SRA Metada with AWS Athena and a new dataset fo SARS-CoV-2 30 Sep 20 Join us on Oct 14th to learn how to use		
				Primer-BLAST now designs primers for group of related sequences 25 Sep 20		
				Primer-BLAST now has a "Primers common for a group of sequences"		

GD Genetic Diversity Centre Zurich

21.06.21 | GDA21 | JCW

GDC

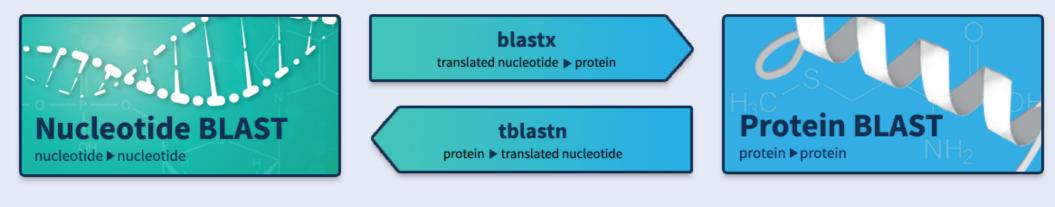
entre

diversity

Zurich

Genetic

Basic Local Alignment Search Tool


BLAST finds regions of similarity between biological sequences. The program compares nucleotide or protein sequences to sequence databases and calculates the statistical significance. Learn more

BLAST+ 2.5.0 released

The new version offers support for HTTPS, accession.version as the primary sequence identifier, support for composition-based statistics with RPSTBLASTN, and a new taxonomic organism report. Fri, 23 Sep 2016 17:00:00 EST

More BLAST news...

Web BLAST

Ν

E W S

BLAST Genomes

GDC Genetic Diversity Centre Zuric 1

search	input		query		database
blastn	nt	→	nt	→	nt
blastp	pr	→	pr	→	pr
blastx	nt	→	pr (6)	→	pr
tblastn	pr	→	pr	→	pr (6)
tblastx	nt	→	pr (6)	→	pr (6)

blastn compares nucleotide queries to a nucleotide database

blastp compares protein queries to a protein database

blastx compares a nucleotide query translated in all six reading frames against a protein

database

tblastn compares a protein query against a nucleotide sequence database dynamically

translated in all six reading frames

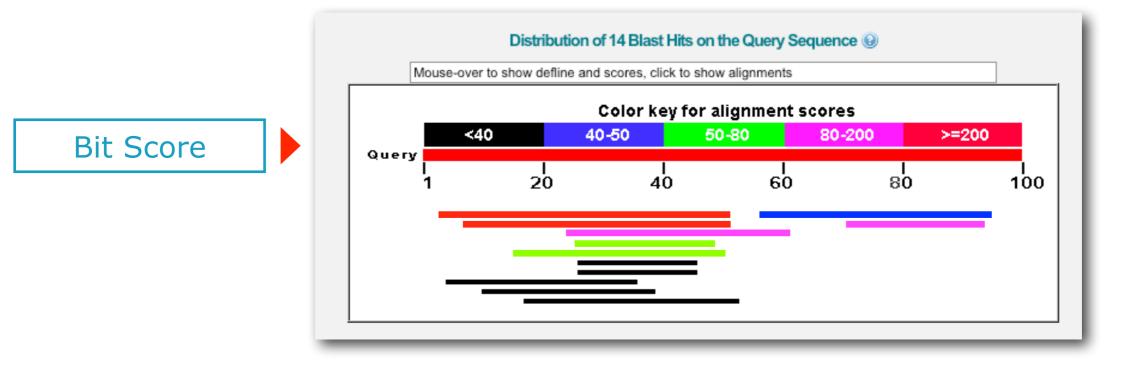
tblastx compares a nucleotide query in all six reading frames against a nucleotide sequence database in all six reading frames

Nucleotide–nucleotide searches are beneficial because no information is lost in the alignment. When a codon is translated from nucleotides to amino acids, approximately 69% of the complexity is lost (4³=64 possible nucleotide combinations mapped to 20 amino acids). In contrast, however, **the true physical relationship between two coding sequences is best captured in the translated view**. Matrices that take into account physical properties, such as PAM and BLOSUM, can be used to add power to the search. Additionally, in a nucleotide search, there are only four possible character states compared to 20 in an amino acid search. Thus the **probability of a match** due to chance versus a match due to common ancestry (identify in state versus identical by descent) is higher.

Setting up a BLAST search

Step 1. Plan the search Step 2. Enter the query sequence Step 3. Choose the appropriate search parameters Step 4. Submit the query

Deciphering the BLAST output


Step 1. Examine the alignment scores and statistics Step 2. Examine the alignments Step 3. Review search details to plan the next step

Post-BLAST analysis

Perform a PSI-BLAST analysis Create a multiple alignment Try motif searching with PHI-BLAST

Graphic Summary

click here to see the nr entry (accession)

Accession	Description	<u>Max</u> score	<u>Total</u> <u>score</u>	<u>Query</u> coverage	▲ <u>E</u> <u>value</u>	<u>Max</u> ident	Links
DQ487112.1	Panax ginseng dehydrin 7 (Dhn7) mRNA, complete cds	39.9	39.9	21%	2.3	100%	
DQ487106.1	Panax ginseng dehydrin 1 (Dhn1) mRNA, complete cds	39.9	39.9	21%	2.3	100%	
AC238433.1	Mus musculus BAC clone RP24-160E3 from chromosome 9, complete :	38.1	38.1	20%	8.2	100%	
AC215885.3	Mus musculus BAC clone RP23-36L10 from chromosome 9, complete s	38.1	38.1	20%	8.2	100%	
CU467051.7	Pig DNA sequence from clone CH242-177E21 on chromosome 2, comp	38.1	38.1	28%	8.2	90%	
<u>NM 001079232.1</u>	Xenopus (Silurana) tropicalis T-cell activation RhoGTPase activating pr	<u>38.1</u>	38.1	20%	8.2	100%	UGM

click here to see the corresponding alignment

21.06.21 | GDA21 | JCW

Nucleotide Alignment

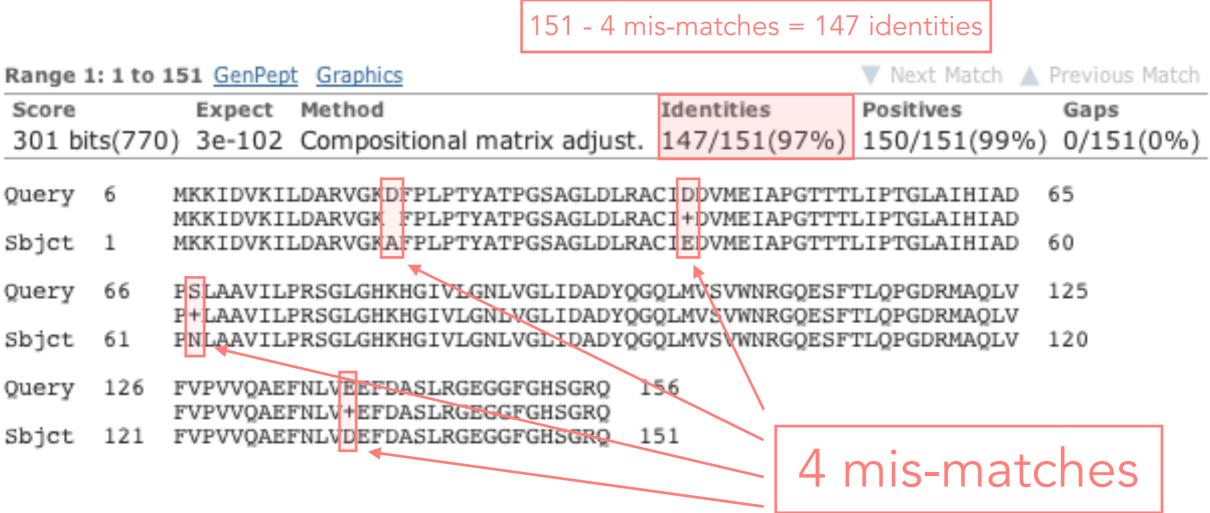
> emb TH7 Length		8088.1 Homo sapiens SRY gene for sex determining region Y, i	ndividual		query sequence
Ident	ities	48 bits (459), Expect = 0.0 = 480/497 (97%), Gaps = 2/497 (0%) s/Minus			
Query Sbjct	1 615	CTACARCTTTGTCCAGTGGCTGTAGCGGTCCCGTTGCTGCGGTGAGCTGGCTG	60 556	t-	
Query Sbjct	61 555	GGGCGGTAAGTGGCCTAGCTGGTGCTCCATTCTTGAGTGTGTGGCTTTCGTACAGTCATC	120 496		
Query Sbjct	121 495	CCTGTACAACCTGTTGTCCAGTTGCACTTCGCTGCAGAGTACCGAAGCGGGATCTGCGGG	180 436		database seguence
Query Sbjct	181 435	AAGCAAACTGCAATTCTTCGGCAGCATNTTCGCCTTCCGACGAGGTCGATACTTATAATT	240 376		database sequence
Query Sbjct	241 375	CGGGTATTTCTCTCTGTGCATGGCCTGTAATTTCTGTGCCTCCTGGAAGAATGGCCATTT 	300 316		
Query Sbjct	301 315	TTCGGCTTCAGTAAGCATTTTCCACTGGTATCCCAGCTGCTTGCT	360 258		
Query Sbjct	361 257	CGCATTCTGGGATTCTCTAGAGCCATCTTGCGCCTCTGATCGCGAGACCACACGNNGAAT	420 198		
Query Sbjct	421 197	GCGTTCATGGGTCGCTTCACTCTATCCTGGNNNNNNNNTTACTGTTTTCTCCCGTTTCA 	480 138		
Query Sbjct	481 137	RRCTGATACTTAGAGTT 497 CACTGATACTTAGAGTT 121			

GD Genetic Diversity Centre Zurich **Alignment -** The process of lining up two or more sequences to achieve **maximal levels of identity** (and conservation, in the case of amino acid sequences) for the purpose of assessing the **degree of similarity** and the **possibility of homology**.

Identity - The extent to which two (nucleotide or amino acid) sequences are invariant.

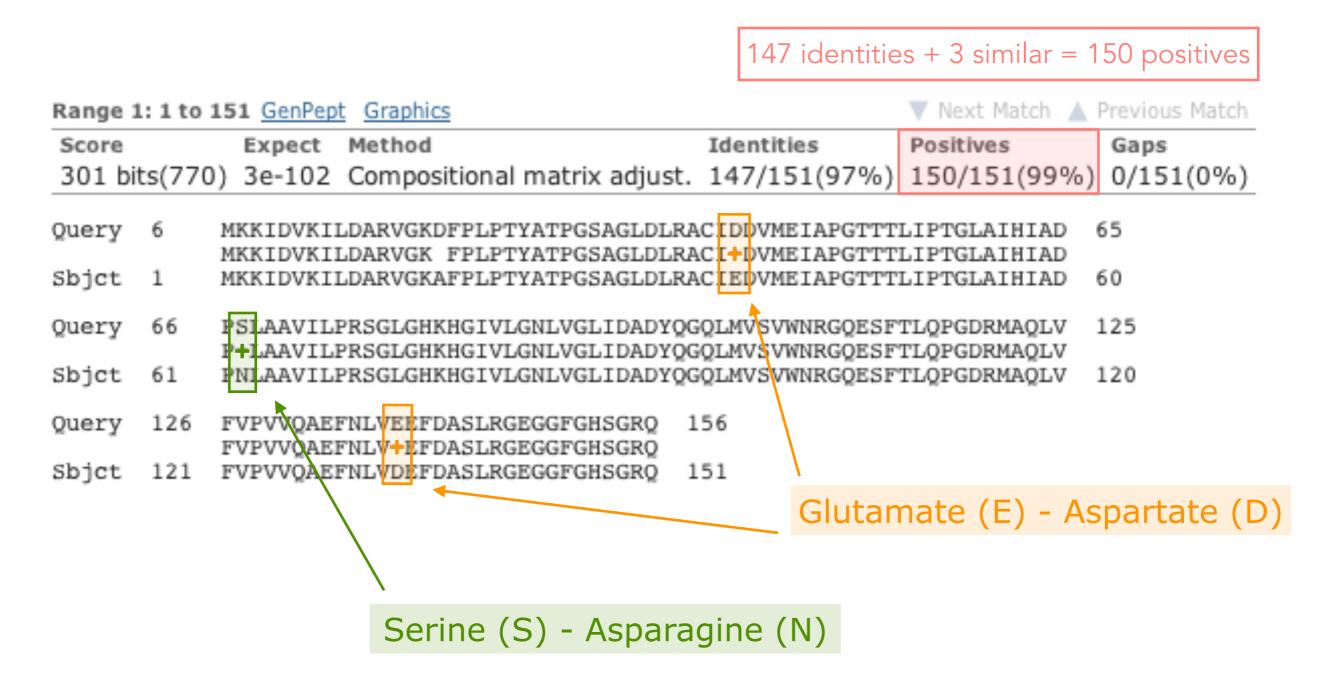
$$PID = \frac{\# \text{ of identical aa or nt}}{\# \text{ of total aa or nt}} \times 100$$

Genetic


Zurich

entre

Protein Alignment


	= +1	s = 157/164 (96%), Positives = 157/164 (96%), Gaps = 0/164 (0%)			
lery		NSKYQ ETGENS QDRVKRPMNAF VWSRDQRRKMALENPRMRNSEISKQLGYQWKM -	.80		
lery		LTEAEKWPFFQEAQKLQAMHREKYPNYKYRPRRKAXMLPKNCSLLPADPASVLCSEVQLD 3	60		
jct	101	LTEAEKWPFFQEAQKLQAMHREKYPNYKYRPRRKA MLPKNCSLLPADPASVLCSEVQLD LTEAEKWPFFQEAQKLQAMHREKYPNYKYRPRRKAKMLPKNCSLLPADPASVLCSEVQLD 1	.60		
lery		NRLYRDDCTKATHSRMEHQLGHLPPINAASSPQQRDRYSHWTKL 492 NRLYRDDCTKATHSRMEHQLGHLPPINAASSPQQRDRYSHWTKL 204	- 11		
Jee	101				
				,	
		database sec	quence		

Protein Alignment - Identities

GDC Genetic Diversit Centre Zurich

Protein Alignment - Positives

lurich

entre

enetic

versit

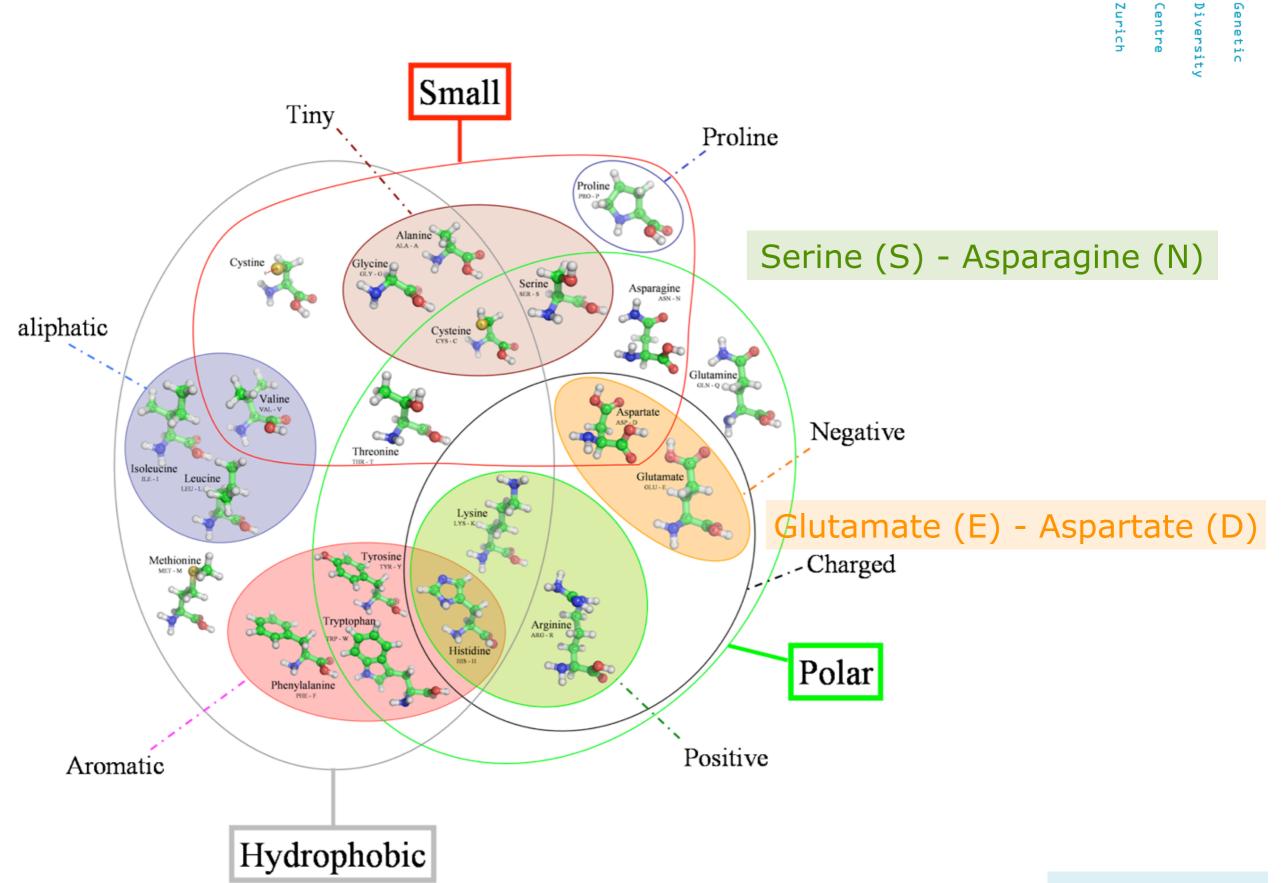
34

Alignment - The process of lining up two or more sequences to achieve **maximal levels of identity** (and conservation, in the case of amino acid sequences) for the purpose of assessing the **degree of similarity** and the **possibility of homology**.

Identity - The extent to which two (nucleotide or amino acid) sequences are invariant.

$$PID = \frac{\# \text{ of identical aa or nt}}{\# \text{ of total aa or nt}} \times 100$$

Similarity - The extent to which nucleotide or protein sequences are related. The extent of similarity between two sequences can be based on percent sequence identity and/or conservation. In BLAST similarity refers to a positive matrix score.


$$\% Similarity = \frac{\# \text{ of identical aa or nt } + \# \text{ of similar aa or nt substitutions}}{\# \text{ of total aa or nt}} \times 100$$

Homology - Similarity attributed to descent from a common ancestor.

Genetic

Urich

entre

GDC

	S	tandard Nucleotide BLAST	
blastn <u>blastp</u> bla	astx tblastn tblastx		
	BLASTN programs search	ch nucleotide databases using a nucleotide query. more	Reset page Bookmark
Enter Query S	Sequence		
Enter accession n	number(s), gi(s), or FASTA sequence(s) 😡 Clear	Query subrange 😡	
>Seq1 TGCACATGTACC	TAAAACTTAC	From	BLAST has New Default
IGCACATOTACC	TAAACTAO	То	Parameters and Search Limits.
			Click here for more info.
Or, upload file	Choose File no file selected		
Job Title	Seq1		
	Enter a descriptive title for your BLAST search 😡		
□ Align two or me	ore sequences 😡		
Choose Searc	ch Set		
Database	OStandard databases (nr etc.): OrRNA/ITS databases OGenomic	+ transcrint databases (Betacoronavirus	
	Nucleotide collection (nr/nt)		
Organism			
Optional	Enter organism name or idcompletions will be suggeste		
	Enter organism common name, binomial, or tax id. Only 20 top taxa will be	shown 😡	
Exclude Optional	Models (XM/XP) Uncultured/environmental sample sequences		
Limit to Optional	Sequences from type material		
Entrez Query	You Tube Create cu	ustom database	
Optional	Enter an Entrez query to limit search 🥹		
Program Sele	ection		
Optimize for	Highly similar sequences (megablast)		
	 More dissimilar sequences (discontiguous megablast) 		
	 Somewhat similar sequences (blastn) 		
	Choose a BLAST algorithm (9)		
BLAST	Search database Nucleotide collection (nr/nt) using Blastn (Optim	nize for somewhat similar sequences)	
Algorithm parame	Note: Parameter values that differ fro	om the default are highlighted in yellow and marked with	th ♦ sign
			Restore default search parameters

GDC

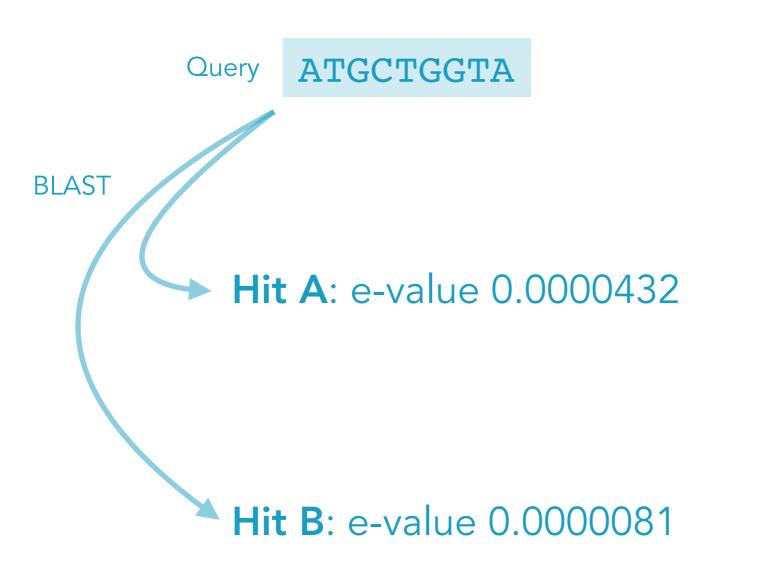
Centre

Zurich

Diversity

Genetic

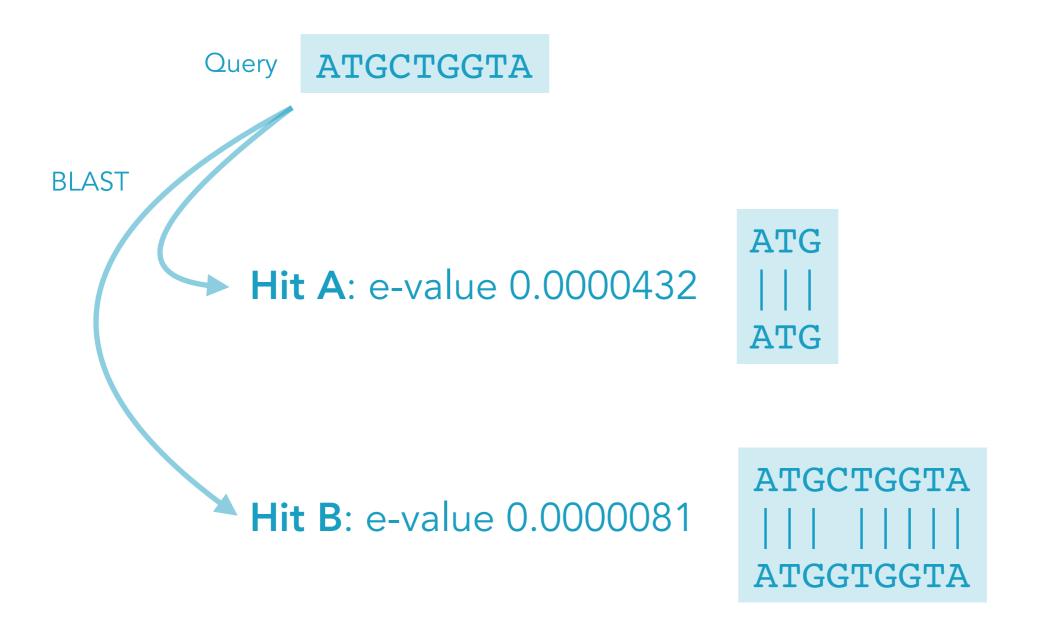
General Param	leters	
Max target sequences	100 C Select the maximum number of aligned sequences to display 😡	
Short queries	Automatically adjust parameters for short input sequences	
Expect threshold	 ♦ 1000 (a) 	
Word size	* 7 📀 😡	
Max matches in a query range	0	
Scoring Param	eters	
Match/Mismatch Scores	 1,-3 2 2 	
Gap Costs	Existence: 5 Extension: 2 ᅌ 🛞	
Filters and Mas	sking	
Filter	♦ □ Low complexity regions	
	Species-specific repeats for: Homo sapiens (Human)	
Mask	♦	
	□ Mask lower case letters	
BLAST	Search database Nucleotide collection (nr/nt) using Blastn (Optimize for somewhat similar sequences)	
	Show results in a new window	


< Edit Search	Save Search Search Summary ♥	How to read this report		-
Your sea	arch parameters were adjusted to search for a short input sequence.			
ob Title	Seq1	Filter Results		
ID	RXGRMSJU014 Search expires on 10-09 15:42 pm Download All 💙			
rogram	BLASTN 😮 Citation 💙	Organism only top 20	will appear	exclude
atabase	nt <u>See details</u> ♥	Type common name	e, binomial, taxid or grou	up name
uery ID	lcl Query_25269	+ Add organism		
escription	Seq1			
olecule type	nucleic acid	Percent Identity	E value	Query Coverage
uery Length	22	to	to	to
ther reports	Distance tree of results MSA viewer 😮			
Descriptions	s Graphic Summary Alignments Taxonomy			Filter Reset
	Graphic Summary Alignments Taxonomy	Download	✓ Manage Colu	
Sequences		Download	✓ Manage Colu GenBank	
Sequences	producing significant alignments	Download	<u>GenBank</u> Max Total Q	mns ∨ Show 100 ∨ 3
Sequences Select all	producing significant alignments 100 sequences selected	Download	GenBank Max Total Qu Score Score Co	mns ∨ Show 100 ∨ ? <u>Graphics Distance tree of results</u> uery E Per. Accession
Sequences Select all Homo sar	producing significant alignments 100 sequences selected Description	Download	GenBank Max Total Qu Score Score Cd 44.1 44.1 10	mns ✓ Show 100 ♥ ? Graphics Distance tree of results uery E Per. Accession over value Ident Accession
Sequences Select all Homo sag Homo sag Homo sag	producing significant alignments 100 sequences selected Description piens clone NA12878_chr21_27696869_27696870 genomic sequence	Download	GenBank Max Total Qu Score Score Cu 44.1 44.1 10 44.1 44.1 10	mns ∨ Show 100 ∨ Graphics Distance tree of results uery E Per. Accession over value Ident Accession 00% 0.035 100.00% KY429753.1
Sequences Select all Homo sag Homo sag Homo sag Eukaryoti	producing significant alignments 100 sequences selected Description piens clone NA12878_chr21_27696869_27696870 genomic sequence piens clone CHM1_3_139044444_139044445 genomic sequence	Download	GenBank Max Total Qr Score Score Cd 44.1 44.1 10 44.1 44.1 10 44.1 44.1 10	mns ✓ Show 100 ✓ ? Graphics Distance tree of results uery E Per. Accession over value Ident Accession 00% 0.035 100.00% KY429753.1 00% 0.035 100.00% KY429400.1 00% 0.035 100.00% KY429510.1 95% 0.14 100.00% CP034499.1
Sequences Select all Homo sag Homo sag Homo sag Eukaryoti Eukaryoti	producing significant alignments 100 sequences selected Description plens clone NA12878_chr21_27696869_27696870 genomic sequence plens clone CHM1_3_139044444_139044445 genomic sequence plens clone CHM1_8_84691462_84691463 genomic sequence ic synthetic construct chromosome 20 ic synthetic construct chromosome 18	Download	Max Total Qu Score Score Core 44.1 44.1 10 44.1 44.1 10 44.1 44.1 10 44.1 213 9 42.1 188 9	mms ✓ Show 100 ✓ Image: Constraint of the second s
Sequences Select all Homo sag Homo sag Homo sag Lukaryoti Lukaryoti Lukaryoti	producing significant alignments 100 sequences selected Description piens clone NA12878_chr21_27696869_27696870 genomic sequence piens clone CHM1_3_139044444_139044445 genomic sequence piens clone CHM1_8_84691462_84691463 genomic sequence ic synthetic construct chromosome 20 ic synthetic construct chromosome 18 ic synthetic construct chromosome 17	Download	Max Total Quadratic Max Total Quadratic Score Score Carrow 44.1 44.1 10 44.1 44.1 10 44.1 44.1 10 44.1 44.1 10 44.1 44.1 10 42.1 213 9 42.1 188 9 42.1 170 9	mms ✓ Show 100 ✓ ② Graphics Distance tree of results uery E Per. Accession 00% 0.035 100.00% KY429753.1 00% 0.035 100.00% KY429400.1 00% 0.035 100.00% KY429510.1 95% 0.14 100.00% CP034499.1 95% 0.14 100.00% CP034496.1 95% 0.14 100.00% CP034495.1
Sequences Select all Homo sag Homo sag Homo sag Cukaryoti Eukaryoti Eukaryoti Eukaryoti	producing significant alignments 100 sequences selected Description plens clone NA12878_chr21_27696869_27696870 genomic sequence plens clone CHM1_3_139044444_139044445 genomic sequence plens clone CHM1_8_84691462_84691463 genomic sequence ic synthetic construct chromosome 20 ic synthetic construct chromosome 18	Download	Max Total Quadratic Score Score Carrow 44.1 44.1 10 44.1 44.1 10 44.1 44.1 10 44.1 44.1 10 44.1 14.1 10 42.1 213 9 42.1 188 9 42.1 170 9 42.1 102 9	mms ✓ Show 100 ✓ Image: Constraint of the second s

GDG Genetic Diversity Centre Zurich

E value

Expectation value. The number of different alignments with scores equivalent to or better than S that are expected to occur in a database search by chance. The lower the E value, the more significant the score.


GD

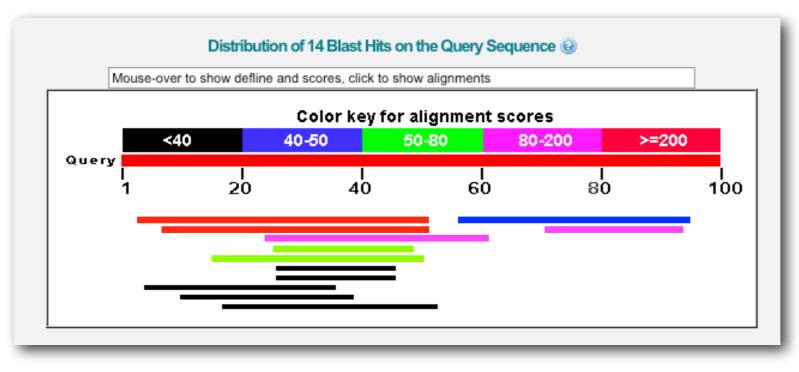
entre

iversity

Zurich

Genetic

GD


entre

Zurich

Genetic

iversity

Graphic Summary

GD

Centre

Zurich

Genetic

Diversity

Accession	Description	<u>Max</u> score	<u>Total</u> <u>score</u>	<u>Query</u> coverage		<u>Max</u> ident	Links
DQ487112.1	Panax ginseng dehydrin 7 (Dhn7) mRNA, complete cds	<u>39.9</u>	39.9	21%	2.3	100%	
DQ487106.1	Panax ginseng dehydrin 1 (Dhn1) mRNA, complete cds	39.9	39.9	21%	2.3	100%	
AC238433.1	Mus musculus BAC clone RP24-160E3 from chromosome 9, complete :	38.1	38.1	20%	8.2	100%	
AC215885.3	Mus musculus BAC clone RP23-36L10 from chromosome 9, complete	38.1	38.1	20%	8.2	100%	
CU467051.7	Pig DNA sequence from clone CH242-177E21 on chromosome 2, comp	38.1	38.1	28%	8.2	90%	
<u>NM 001079232.1</u>	Xenopus (Silurana) tropicalis T-cell activation RhoGTPase activating pr	<u>38.1</u>	38.1	20%	8.2	100%	UGM

GD Diversit Centre Zurich

E value

Expectation value. The number of different alignments with scores equivalent to or better than S that are expected to occur in a database search by chance. The lower the E value, the more significant the score.

Bit score

The value S' is derived from the raw alignment score S in which the statistical properties of the scoring system used have been taken into account. Because bit scores have been normalized with respect to the scoring system, they **can be used to compare alignment scores from different searches**.

Descriptions Graphic Summary Alignments Taxonomy

Distribution of the top 182 Blast Hits on 100 subject sequences

Ļ	I,	Query	I.	1	
4	8	12	16	20	

GD Genetic Diversity Centre Zurich

GDC Genetic Diversity Centre Zurich

Descriptions

Graphic Summary Alignments

Taxonomy

🛓 <u>Download</u> 🗸	GenBank Gra	aphics				Next <u>Next</u> <u>Previous</u> <u>Previous</u>
Homo sapiens c	lone NA1287	78_chr21_2769686	69_27696870 ger	nomic sequence		
Sequence ID: KY429	753.1 Lengt	h: 3003 Number of Ma	atches: 1			
Range 1: 60 to 81	GenBank Gra	aphics		▼ Next Match	Previous Match	
Score 44.1 bits(22)	Expect 0.035	Identities 22/22(100%)	Gaps 0/22(0%)	Strand Plus/Minus		
~	ACATGTACCTA ACATGTACCTA					
▲ Download ~	GenBank Gra	aphics				▼ <u>Next</u> ▲ <u>Previous</u> ≪ <u>Descriptions</u>
		aphics _3_139044444_139	044445 genomie	c sequence		▼ <u>Next</u> ▲ <u>Previous</u> ≪ <u>Descriptions</u>
Homo sapiens c	lone CHM1_	•	•	: sequence		▼ <u>Next</u> ▲ <u>Previous</u> ≪ <u>Descriptions</u>
Homo sapiens c	lone CHM1_ 400.1 Lengt	3_1390444444_139	•		Previous Match	▼ <u>Next</u> ▲ <u>Previous</u> ≪ <u>Descriptions</u>
Homo sapiens c Sequence ID: KY429	lone CHM1_ 400.1 Lengt	3_1390444444_139	•		▲ <u>Previous Match</u>	▼ <u>Next</u> ▲ <u>Previous</u> ≪ <u>Descriptions</u>

GDC Genetic Diversity Centre Zurich

Descriptions

Alignments

Graphic Summary

Taxonomy

Reports	Lineage Organism	Taxonomy			
100 sequences	s selected 😯				
	Organism	Blast Name	Score	Number of Hits	Description
root				<u>104</u>	
 cellular orga 	anisms			<u>94</u>	
Eukaryot	ta	eukaryotes		<u>92</u>	
<u>Bilater</u>	ria	animals		<u>90</u>	
<u>Eut</u>	eleostomi	vertebrates		<u>88</u>	
<u>A</u>	Amniota	vertebrates		<u>80</u>	
	. Boreoeutheria	placentals		<u>78</u>	
	Euarchontoglires	placentals		<u>73</u>	
	<u>Hominoidea</u>	primates		<u>64</u>	
	<u>Hominidae</u>	primates		<u>63</u>	
	<u>Homininae</u>	primates		<u>57</u>	
	<u>Homo sapiens</u>	primates	44.1	<u>53</u>	Homo sapiens hits
	<u>Pan troglodytes</u>	primates	42.1	<u>4</u>	Pan troglodytes hits
	<u>Pongo abelii</u>	primates	42.1	<u>6</u>	Pongo abelii hits
	<u>Nomascus leucogenys</u>	primates	36.2	1	Nomascus leucogenys hits
	Mus musculus	rodents	38.2	<u>4</u>	Mus musculus hits
	<u>Onychomys torridus</u>	rodents	38.2	1	Onychomys torridus hits
	<u>Galeopterus variegatus</u>	placentals	36.2	1	Galeopterus variegatus hits
	<u>Acomys russatus</u>	rodents	36.2	<u>3</u>	Acomys russatus hits
	Rousettus aegyptiacus	bats	38.2	<u>2</u>	Rousettus aegyptiacus hits
	Canis lupus familiaris	carnivores	36.2	2	Canis lupus familiaris hits
	Felis catus	carnivores	36.2	1	Felis catus hits
	Anas platyrhynchos	birds	40.1	1	Anas platyrhynchos hits
	<u>Streptopelia turtur</u>	birds	36.2	1	Streptopelia turtur hits
[<u>Danio kyathit</u>	bony fishes	38.2	2	Danio kyathit hits
<u>s</u>	<u>Sparus aurata</u>	bony fishes	36.2	1	Sparus aurata hits
[Danio rerio	bony fishes	36.2	<u>3</u>	Danio rerio hits
<u>E</u>	Epinephelus fuscoguttatus	bony fishes	36.2	1	Epinephelus fuscoguttatus hits
<u>P</u>	Poecilia reticulata	bony fishes	34.2	1	Poecilia reticulata hits
<u>Bel</u>	onocnema treatae	wasps, ants, and bees	36.2	1	Belonocnema treatae hits
<u>Car</u>	rposina sasakii	moths	34.2	1	Carposina sasakii hits
Rapha	anus sativus	eudicots	36.2	1	Raphanus sativus hits
Medic	ago truncatula	eudicots	36.2	1	Medicago truncatula hits
Acinetob	bacter seifertii	g-proteobacteria	36.2	2	Acinetobacter seifertii hits
	synthetic construct	other sequences	42.1	<u>10</u>	eukaryotic synthetic construct hits

BLAST in Terminal

Blast on fasta file - for smaller references

blastn -db SUBJECT.fa -evalue 0.0001 -query QUERY.fa -outfmt 6 -out RES.blast

Index reference (subject) first and blast against index db

makeblastdb -dbtype nucl -in REF.fa -title "REF" -logfile REF.log

blastn -db REF -evalue 0.0001 -query Q.fa -outfmt 6 -out Q_dbREF.blast

BLAST in R

Packages with blast functions:

blastSeq {hoardeR}
blastSequences {annotate}
rBLAST (GitHub)

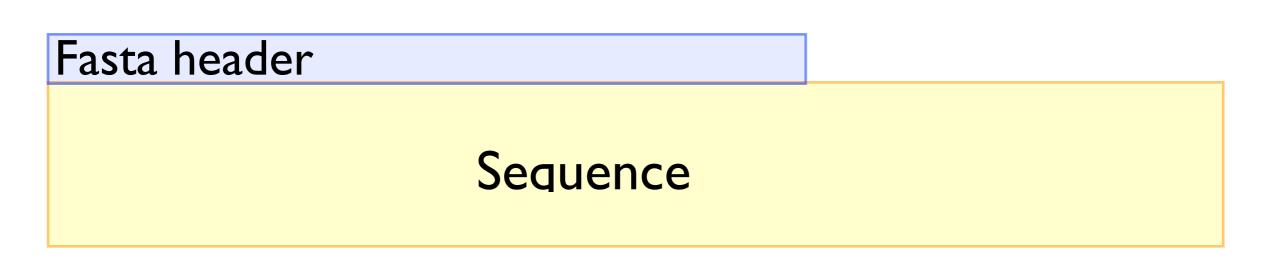
Blast via system command:

system(command = "/path/to/blast/blastn -db REF -query Q.fa -outfmt 6 -evalue 1e-6)

```
system2(
   command = "/path/to/blast/blastn",
   args = c("-db REF -query Q.fa -outfmt 6 -evalue 10e-6))
```


BLAT (BLAST-like alignment tool)MegaBLAST (BLAT variant)UBLAST (USEARCH BLAST alternative)

Self-Study Guide


21.06.21 | GDA21 | JCW

BLAST [®] » bla	astn suite	Home	Recent Results	Saved Strategies	Help
	Standard Nucleotide BL	AST			
blastn blastp blas	tx tblastn tblastx				
Enter Query S	BLASTN programs search nucleotide databases using	a nucleotide que	ery. more	Reset page	Bookmark
	number(s), gi(s), or FASTA sequence(s) 🛞 <u>Clear</u>	Query sub	orange 🤢		
	Fasta Sequence(s)	From			
Or, upload file Job Title	Choose File no file selected				
□ Align two or mo	Enter a descriptive title for your BLAST search ()				
Choose Searc	ch Set				
Database	OHuman genomic + transcript OMouse genomic + transcript Others	(nr etc.):			
	Nucleotide collection (nr/nt)				
Organism Optional	Enter organism name or idcompletions will be suggested Exclude				
	Enter organism common name, binomial, or tax id. Only 20 top taxa will be show	n 😡			
Exclude Optional	□ Models (XM/XP) □ Uncultured/environmental sample sequences				
Limit to Optional	Sequences from type material				
Entrez Query	You Tube Create custom	database			
Optional	Enter an Entrez query to limit search 🎯				
Program Sele	ction				
Optimize for	 Highly similar sequences (megablast) More dissimilar sequences (discontiguous megablast) Somewhat similar sequences (blastn) Choose a BLAST algorithm @ 				
BLAST	Search database Nucleotide collection (nr/nt) using Megablast (Optim	ize for highly s	similar sequences)		
+Algorithm parame	eters				

GD Genetic Diversity Centre Zurich

>Dmag_B24_ORF0007_contigh23_2356_3466


```
NCBI fasta headers:
>gi|224922792|ref|NM_000860.4| Homo sapiens hydroxyprostaglandin
dehydrogenase 15-(NAD) (HPGD), transcript variant 1, mRNA
```

Your header: >Code_Species_Location/Gene/Coordinates

Sequences are expected to be represented in the standard IUB/IUPAC amino acid and nucleic acid codes, with these exceptions: lower-case letters are accepted and are mapped into upper-case; a single hyphen or dash can be used to represent a gap of indeterminate length; and in amino acid sequences, U and * are acceptable letters (see below). Before submitting a request, any numerical digits in the query sequence should either be removed or replaced by appropriate letter codes (e.g., N for unknown nucleic acid residue or X for unknown amino acid residue). The nucleic acid codes supported are:

А	adenosine	С	cytidine	G	guanine
т	thymidine	Ν	A/G/C/T (any)	U	uridine
K	G/T (keto)	s	G/C (strong)	Y	T/C (pyrimidine)
М	A/C (amino)	W	A/T (weak)	R	G/A (purine)
В	G/T/C	D	G/A/T	H	A/C/T
v	G/C/A	-	gap of indeterminate	le	ngth

For those programs that use amino acid query sequences (BLASTP and TBLASTN), the accepted amino acid codes are:

А	alanine	Р	proline
в	aspartate/asparagine	Q	glutamine
С	cystine	R	arginine
D	aspartate	s	serine
E	glutamate	т	threonine
\mathbf{F}	phenylalanine	U	selenocysteine
G	glycine	v	valine
н	histidine	W	tryptophan
I	isoleucine	Y	tyrosine
к	lysine	z	glutamate/glutamine
L	leucine	х	any
М	methionine	*	translation stop
Ν	asparagine	-	gap of indeterminate length

Genetic

iversit

Zurich

entre

Choose Database (Subject)

NCBI/ BLAST/ blastn st	uite Standard Nucleotide BLAST		
blastn <u>blastp</u> blas	stx tblastn tblastx		
Enter Query Sec	BLASTN programs search nucleotide databases using a nucleotide query. more	Reset page	Bookmark
Dmag_B24_ORF0007_c ATGTGAACAAGTCTGAGAG ATCGGGCGGGCTTTCGATC CTAGCTGACTAGCTGGACT	mber(s), gi(s), or FASTA sequence(s) Image: Clear Sequence sequ		
Or, upload file	Browse No file selected.		
Job Title	Dmag_B24_ORF0007_contigh23_2356_3466		
	Enter a descriptive title for your BLAST search (9)		
☐ Align two or more	e sequences 🛞		
Choose Search	Set		
Database	OHuman genomic + transcript OMouse genomic + transcript Others (nr etc.):		
Organism Optional	Genomic plus Transcript Human genomic plus transcript (Human G+T) Mouse genomic plus transcript (Mouse G+T) Other Databases		
Exclude Optional Limit to Optional Entrez Query Optional	Nucleotide collection (nr/nt) Reference RNA sequences (refseq_rna) Reference genomic sequences (refseq_genomic) NCBI Genomes (chromosome)		
Program Selecti Optimize for	Expressed sequence tags (est) Genomic survey sequences (gss) High throughput genomic sequences (HTGS) Patent sequences(pat) Protein Data Bank (pdb) Human ALU repeat elements (alu_repeats) Sequence tagged sites (dbsts)		
BLAST	Whole-genome shotgun contigs (wgs) Transcriptome Shotgun Assembly (TSA) 16S ribosomal RNA sequences (Bacteria and Archaea)	sequences)	

GDC Genetic Diversity Centre Zurich

NCBI/ BLAST/ blastn s	ulto.	Homo sapiens (human) Nucleotide BLAST	
		nomo sapiens (numan) Nucleotide BLAST	
Enter Query Se	<u>stx tblastn tblastx</u> quence	BLASTN programs search nucleotide databases using a nucleotide query. more	Reset page Bookmark
	mber(s), gi(s), or FASTA sequence(s) 😣	Clear Query subrange 😡	
>Beq AGTSCACACGCGTCACCGT	<u>CAACGT</u>	From To	
Or, upload file Job Title	Browse No file selected.		
Choose Search	Set		
Database	Genome (Annotation Release 105 all assemblies	top-level) 🛟 3455 sequences 🛞	
Exclude	Models (XM/XP) Uncultured/environment	ntal sample sequences	
timize for	O Highly similar se	equences (megablast) sequences (discontiguous megablast) ar sequences (blastn) orithm 🚱	
Algorithm parameter	ers		
BLAST	Search database Genome (Annotation Rel	ease 105 all assemblies top-level) - Homo sapiens using Megablast (Optimize for highly s	similar sequences)
+ Algorithm parameter	ers		

Megablast is intended for comparing a query to closely related sequences and works best if the target percent identity is 95% or more but is very fast.

Discontiguous megablast uses an initial seed that ignores some bases (allowing mismatches) and is intended for cross-species comparisons.

BlastN is slow, but allows a word-size down to seven bases.

GΣ

entre

Genetic

diversity

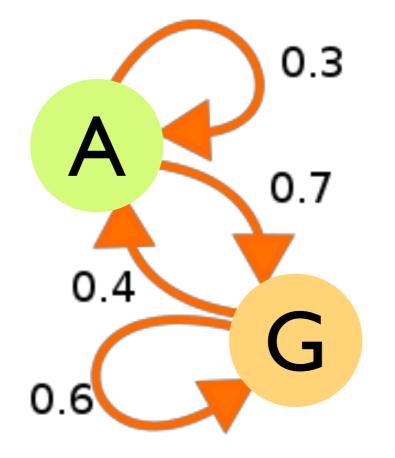
Zurich

Change Default Search Parameter

	► NCBI/ BLAST/ blastn s	suite	Homo sapiens (human) Nucleotide BLAST	
	blastn <u>blastp</u> bl	astx tblastn tblastx		
	Enter Query Se	BLAST	N programs search nucleotide databases using a nucleotide query. more	Reset page Bookmark
		umber(s), gi(s), or FASTA sequence(s) 😡	Clear Query subrange @	
	>peq AGTGCACACACGTCACCG		From	
			From	
			То	
	Or, upload file	Browse No file selected.		
	Job Title	browse No like selected.		
	000 1100	Enter a descriptive title for your BLAST search ()		
	Choose Search	n Set		
	Database	Genome (Annotation Release 105 all assemblies top-le	vel) 🛟 3455 sequences 🛞	
	Exclude	Models (XM/XP) Uncultured/environmental sa	mple sequences	
	Entrez Query			
	Optional	Enter an Entrez query to limit search 😣		
	Program Selec	tion		
	Optimize for			
	optimize for	 Highly similar sequences (megablast) More dissimilar sequences (discontiguous mega 	blast)	
		 Somewhat similar sequences (blastn) 	uast)	
		Choose a BLAST algorithm 😡		
BLAST	Search databas	se Genome (Annotation Release 105 a	all assemblies top-level) - Homo sapiens using Megablast (Optimize fo	r highly similar sequences)
	Show results in	n a new window		
Algorithm parameter	ers			

Algorithm paramet	Note: Parameter values	s that differ from the default are highlighted in yel	low and marked with <a>sign					
General Param	leters							
Max target sequences	100 Select the maximum number of aligned sequences to display 🚱							
Short queries	Automatically adjust parameters for short input sequences 😡							
Expect threshold	10	10						
Word size	28 🛟 🚱							
Max matches in a query range	0							
Scoring Param	eters	Match/mismatch ratio	Similarity (%)					
Match/Mismatch Scores	1,-2	0.33 (1/-3)	99					
Gap Costs	Linear 🔷 🚱	-0.5 (1/-2)	95					
Filters and Mas	sking	-1 (1/-1)	75					
Filter	 Low complexity regions (2) Species-specific repeats for: Human 							
Mask	Mask for lookup table only Mask lower case letters							
BLAST	Search database Nucleotide collection (nr/nt) using	g Megablast (Optimize for highly similar sequence	es)					

When choosing a matrix, it is important to consider the alternatives. Do not simply choose the default setting without some initial consideration.


Alignment size	Best at detecting	Similarity (%)	PAM	BLOSUM
Short	Similarity within a species	75–90	PAM30	BLOSUM95
"	Similarity within a genus	60–75	PAM70	BLOSUM85
Medium	Similarity within a family	50–60	PAM120	BLOSUM80
"	The largest range of similarity	40–50	PAM160	BLOSUM62
Long	Similarity within a class	30-40	PAM250	BLOSUM45
"	Similarity within the twilight zone	20-30		BLOSUM30

The matrices highlighted in bold are available through NCBI's BLAST web interface. **BLOSUM62** has been shown to provide the best results in BLAST searches overall due to its ability to detect large ranges of similarity. Nevertheless, the other matrices have their strengths. For example, if your goal is to only detect sequences of high similarity to infer homology within a species, the PAM30, BLOSUM90, and PAM70 matrices would provide the best results.

GD Genetic Diversity Centre Zurich

Percent **A**ccepted **M**utation (**PAM**) - A unit introduced by Margaret Dayhoff et al. (1978) to quantify the amount of evolutionary change in a protein sequence. 1.0 PAM unit, is the amount of evolution which will change, on average, 1% of amino acids in a protein sequence. A PAM(x) substitution matrix is a look-up table in which scores for each amino acid substitution have been calculated based on the frequency of that substitution in closely related proteins that have experienced a certain amount (x) of evolutionary divergence.

The PAM matrices imply a **Markov chain model** of protein mutation. The PAM matrices are normalized so that, for instance, the PAM1 matrix gives substitution probabilities for sequences that have experienced one point mutation for every hundred amino acids. The mutations may overlap so that the sequences reflected in the PAM250 matrix have experienced 250 mutation events for every 100 amino acids, yet only 80 out of every 100 amino acids have been affected.

A **Markov chain**, named for Andrey Markov, is a mathematical system that undergoes transitions from one state to another in a chainlike manner. It is a **random process** characterized as memoryless: the next state depends only on the current state and not on the entire past. This specific kind of "memorylessness" is called the Markov property. Markov chains have many applications as statistical models of realworld processes.

Iurich

entre

enetic

Blocks **Substitution Matrix (BLOSUM).** A substitution matrix in which scores for each position are derived from observations of the frequencies of substitutions in blocks of local alignments in related proteins. Each matrix is tailored to a particular evolutionary distance. In the BLOSUM62 matrix, for example, the alignment from which scores were derived was created using sequences sharing no more than 62% identity. Sequences more identical than 62% are represented by a single sequence in the alignment so as to avoid over-weighting closely related family members. (Henikoff and Henikoff 1992)

														S _{ij}	=	$\sqrt{\lambda}$	JIO	98([.]	$p_i * q$			
Ala	4											Þii	is the	e prot	babili			``		5 /	nd j re	er
Arg Asn	- 1 - 2	5	б										ich ot	•		-					-	•
Asp	- 2	- 2	1	б									e bac	-	-					-		
Cys	0	- 3	- 3	- 3	9								id j in	• •			•					
Gln	- 1	1	0	0	- 3	5							scalin mput	-					e ma	trix C	ontali	IS
Glu	- 1	0	0	2	- 4	2	5						mpu	abic	integ		iues.					
Gly	0	- 2	0	_	- 3		- 2	б				-	_	_	_	_	_	_	_	_	_	
His	- 2		1	- 1	- 3	_	0	- 2	8													
lle	- 1	- 3	- 3	- 3			-	- 4	- 3	4												
Leu	- 1	- 2	- 3	- 4 - 1	- 1	-	- 3	- 4	- 3	2	- 2	5										
Lys Met	- 1	2	0	_	- 3 - 1		- 2	- 2 - 3	- 1	- 5	- 2	5	5									
Phe	- 2	- 3	- 3		-	-		- 3	- 1	0	0	- 3	0	б								
Pro	- 1	- 2	- 2	- 1	- 3		- 1	- 2	- 2	- 3	- 3	- 1	- 2		7							
Ser	1	- 1	1	0	- 1	0	0	0	- 1	- 2	- 2	0	- 1	- 2	- 1	4						
Thr	0	- 1	0	- 1	- 1	- 1	- 1	- 2	- 2	- 1	- 1	- 1	- 1	- 2	- 1	1	5					
Trp	- 3	- 3	- 4	- 4	- 2	- 2	- 3	- 2	- 2	- 3	- 2	- 3	- 1	1	- 4	- 3	- 2	11				
Tyr	- 2	- 2	- 2	- 3	- 2		- 2	- 3	2	- 1	- 1	- 2	- 1	3	- 3	- 2	- 2	2	7			
Val	. 0	- 3	- 3		_	-			- 3	. 3		2	1	- 1	- 2	- 2	0	- 3	- 1	4		
	Ala	Arg	Asn	Asp	Cys	Gln	Glu	Gly	His	lle	Leu	Lys	Met	Phe	Pro	Ser	Thr	Trp	Tyr	Val		

The BLOSUM62 matrix

(1) 1 (1)C

placing nd q_j are o acids i ctor λ is s easily

HS150 UniBas1 JCW

GDC

ivers

entre

Genetic

Zurich

Algorithm parameters		Note: Parameter values that differ from the default are highlighted in yellow and marked with * sign							
General Parame	eters								
Max target sequences									
Short queries	Automatically adjust parameters for short input sequences 😡								
Expect threshold	nold 10								
Word size	28 🛟 🎯								
Max matches in a query range	0								
Scoring Parame	eters								
Match/Mismatch Scores Gap Costs	1,-2 🔹 🛞 Linear								
Filters and Mask	king								
Filter	Low complexity regions								
Mask	☑ Mask for lookup table onl ☐ Mask lower case letters (
BLAST	Search database Nucleotic	le collection (nr/nt) using Megablast (Optimize for highly similar sequences) w							

G	2	>	С
Zurich	Centre	Diversity	Genetic

Algorithm parameter	Note: Parameter values that differ from the default are highlighted in yellow and marked with sign						
General Parame	eters						
Max target sequences	100 Select the maximum number of aligned sequences to display (2)						
Short queries	Automatically adjust parameters for short input sequences 🥹						
Expect threshold	10						
Word size	28 🗘 🛞						
Max matches in a query range	0						
Scoring Parame	ters						
Match/Mismatch Scores Gap Costs	1,-2 🗘 🎯 Linear 🗘 🎯						
Filters and Mas	king						
Filter	Low complexity regions 🚱						
Mask	Mask for lookup table only 🚱						
BLAST	Search database Nucleotide collection (nr/nt) using Megablast (Optimize for highly similar sequences)						