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Euler, Leonhard (1736). "Solutio problematis ad geometriam situs pertinentis". Comment. Acad. Sci. U. Petrop 8, 128–40.

The Seven Bridges of Königsberg is a historically notable problem in 
mathematics. Its negative resolution by Leonhard Euler (1736) laid the 
foundations of graph theory.
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An edge is a visual representation of a relation (associations). It is a line 
that connects two nodes. Edges can be undirected or directed. 
A node is a visual representation of an entity (e.g. species/OTU or 
sample).
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Networks are interesting because of their specific structural patterns, and how those 
structures affect the members of the network. Stated more simply, networks affect 
their members based on where those members are located in the networks.
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Each node denotes an ingredient, the node color indicates food category, and node size reflects the ingredient prevalence in recipes. Two 
ingredients are connected if they share a significant number of flavor compounds, link thickness representing the number of shared compounds 
between the two ingredients. The map shows only the statistically significant links. Ahn et al. (2011) Flavor network and the principles of food 
pairing. Scientific Reports volume 1, Article number: 196.
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Graphical view of the coexpression network where the nodes correspond to genes and the edges to coexpression links. The network was produced as the intersection of 
two datasets (MAS5-Spearman and RMA-Pearson datasets with PPV > 0.60) to provide a confident human coexpression network that includes 615 genes and 2190 
pairwise coexpression interactions. The most significant regions have been marked with background colors and labels. The color of the nodes (from red to grey) and the 
shape (circles or diamonds) were obtained following MCODE algorithm, being: circular nodes, the ones found with high cluster coefficient; diamond nodes, the ones 
with lower cluster coefficient; intensity of red color, degree of clustering changing till pale grey for the most peripheral nodes that only have one link.

Prieto et al. (2008) Human gene coexpression landscape: confident network derived from tissue transcriptomic profiles. PLOS ONE.
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Gene co-expression networks (GCNs) are transcript–transcript association networks, 
generally reported as undirected graphs, where genes are connected when an 
appreciable co-expression association between them exists.
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GCNs are built from gene expression data by calculating co-expression values in terms 
of pairwise gene similarity score and choosing a significance threshold. Debates on 
normalization methods, co-expression correlation (e.g., based on Pearson’s or 
Spearman’s correlation measures, among others) and significance and relevance are 
still alive and ongoing. Graphical Gaussian Models are also popular in the field of 
GCNs, the key idea behind them being the use of partial correlations, able to 
discriminate between direct and indirect interactions, as a degree of independence of 
any pair of genes. Other strategies for GCN inference include edge removal based on 
gene triplets analysis (e.g., ARACNE), regression methods and Bayesian networks 
(aimed to discover the best gene set predictor of a target gene expression). 

Source: Tieri et al. (2019) Network Inference and Reconstruction in Bioinformatics. Encyclopedia of 
Bioinformatics and Computational Biology.
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🤒 😀
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🤒 😀
"Our world is dominated by, and wholly dependent on, complex microbial 

communities (i.e., microbiota) that are not a mere collection of independent 

individuals but a complex of interconnected ecological communities that 

communicate, cross-feed, recombine, and coevolve."    
— Layeghifard et al. (2016) Trends in Microbiology

Microbiomes are complex microbial communities. Interactions influence the 

structure and the function of such communities.
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"Using network theory, one can model and analyze a 
microbiome and all its complex interactions in a single network. 
An interesting aspect of network theory is that the architectural 
features of networks appear to be universal to most complex 
systems, such as microbiomes, molecular interaction networks, 
computer networks, microcircuits, and social networks."

Layeghifard et al. (2018) Constructing and Analyzing Microbiome Networks in Microbiome Analysis: Methods and 

Protocols, Methods in Molecular Biology, vol. 1849.
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"Biological networks are useful visualizations of microbiome 
data, as they can handle both their scale and diversity. In 
addition to data visualization, a major strength of networks is their 
ability to represent emergent properties. Emergent properties 
are those that would not be observed if parts of the network are 
investigated on their own. These properties may help explain the 
behaviour of complex systems, such as their apparent robustness 
or modularity."

Röttjers and Faust (2018) From hairballs to hypotheses–biological insights from microbial networks. FEMS 

Microbiology Reviews, 42(761–780). 



MDA ▷ Microbiota Network

24.01.20 | MDA20 | JCW 19

"The primary tool for network scientists is network analysis, which 
is a set of methods that are used to (1) visualize networks, (2) 
describe specific charachteristics of overall network structure as 
well as details about the individual nodes, ties, and subgroups 
within the networks, and (3) build mathematical and statistical 
models of network structures and dynamics."

Luke (2015) A User's Guide to Network Analysis in R. Springer ISBN: 3319238825
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Microbial networks are temporary or spatial snapshots of ecosystems that are 

made up of two components: nodes and edges. Nodes usually represent 

microbes (OTUs), but they can also represent other variables of interest. Edges 

represent statistically significant associations between nodes, with the number 

of edges connected to a node referred to as the node’s degree.

Röttjers and Faust (2018) From hairballs to hypotheses–biological insights from microbial networks. FEMS 

Microbiology Reviews, 42(761–780). 
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At first glance it may appear that the figures are showing two quite different networks. In fact, they are two 
different visual representations of the same underlying network. Same network but different layouts.

Luke (2015) A User's Guide to Network Analysis in R. Springer ISBN: 3319238825
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The ties (edge) indicate which nodes are adjacent to one another but the 
length of each line does not communicate any substantive information.

Luke (2015) A User's Guide to Network Analysis in R. Springer ISBN: 3319238825
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The length of the lines (edges) and the layout have no real meaning. 
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Aesthetics of network layouts - Although there are not in fact an infinite number of 
ways to display a network on a screen, the number of possibilities might as well be.

Luke (2015) A User's Guide to Network Analysis in R. Springer ISBN: 3319238825
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Specialiced network diagrams: chord diagram.  

Luke (2015) A User's Guide to Network Analysis in R. Springer ISBN: 3319238825
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n nL d p abundance
A OTU1 3 K-P-C-F-G-S 0.4
B OTU2 3 K-P-C-F-G-S 0.3
C OTU3 3 K-P-C-F-G-S 0.2
D OTU4 3 K-P-C-F-G-S 0.1

Node attributes 

node: color, shape, size, label
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Edge attributes 

edge: width, color, type
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isolate Cluster detection 

n nL p cluster
A OTU1 K-P-C-F-G-S 1
B OTU2 K-P-C-F-G-S 1
C OTU3 K-P-C-F-G-S 1
D OTU4 K-P-C-F-G-S 2

cluster
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Hub (keystone) detection 

n nL p degree
A OTU1 K-P-C-F-G-S 2
B OTU2 K-P-C-F-G-S 2
C OTU3 K-P-C-F-G-S 3
D OTU4 K-P-C-F-G-S 1
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Dynamics (time-series)
n nL d p t ab

A OTU1 3 K-P-C-F-G-S 1 0.4

B OTU2 3 K-P-C-F-G-S 1 0.3

C OTU3 3 K-P-C-F-G-S 1 0.2

D OTU4 3 K-P-C-F-G-S 1 0.1

A OTU1 1 K-P-C-F-G-S 2 0.25

B OTU2 3 K-P-C-F-G-S 2 0.4

C OTU3 2 K-P-C-F-G-S 2 0.1

D OTU4 2 K-P-C-F-G-S 2 0.25

A OTU1 1 K-P-C-F-G-S 3 0.1

B OTU2 3 K-P-C-F-G-S 3 0.4

C OTU3 2 K-P-C-F-G-S 3 0.2

D OTU4 2 K-P-C-F-G-S 3 0.3
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t
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Edge is a link between a pair of nodes. 

Each object in a network is 

called a node (vertex). 

An hub is a node (vertex) with large 
number of links. 

A component is a subgraph. 

An articulation points represent 
vulnerabilities in a connected network. 
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https://www.sixhat.net/finding-communities-in-networks-with-r-and-igraph.html
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Network Data Integration, Analysis, and Visualization in a Box

Cytoscape
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A wide range of methods have been used to construct ecological networks 
based on microbiome data. These approaches vary in their efficiency, accuracy, 
speed, and computational requirement. 

‣Dissimilarity-Based Methods 

‣ Correlation-Based Methods 

‣ Regression-Based Methods 

‣ Probabilistic Graphical Models (PGMs)
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Dissimilarity-Based Methods
The simplest and fastest way to construct co-occurrence networks from OTU microbiome data is to 
use a pairwise dissimilarity index (e.g., Bray–Curtis) in combination with a permutation test.
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Sample1 Sample2

OTU1 20 1

OTU2 12 23

Euclidian distance between sample #1 and sample #2

a2 + b2 = (20 −1)2 + (12 − 23)2

c = a2 + b2

b = 11

a = 19

Pythagorean Theorem:
2x2
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SJaccard =
a

a + b + c
a: Number of species in sample A and sample B (joint occurrences) 
b: Number of species in sample B but not in sample A 
c: Number of species in sample A but not in sample B

Jaccard’s similarity coefficient (presence-absence)

DJaccard =
b + c

a + b + c
a: Number of species in sample A and sample B (joint occurrences) 
b: Number of species in sample B but not in sample A 
c: Number of species in sample A but not in sample B

Jaccard’s dissimilarity coefficient (presence-absence)

R> phyloseq::distance(phyloseq, "j")

R> phyloseq::distance(phyloseq, "cc")
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Dissimilarity-Based Methods
The simplest and fastest way to construct co-occurrence networks from OTU microbiome data is to 
use a pairwise dissimilarity index (e.g., Bray–Curtis) in combination with a permutation test.

Correlation-Based Methods
A popular alternative to dissimilarity-based network inference is correlation-based techniques. 
These methods detect significant pairwise interactions between OTUs using a correlationcoefficient 
such as Pearson's product-moment correlation coefficient or Spearman's nonpara-metric rank 
correlation coefficient. Correlation-based methods suffers from limitations such as detecting 
spurious correlations among low-abundance OTUs in zero-inflated data or being sensitive to 
compositionality. For more details see Weiss et al. (2016) Correlation detection strategies in 
microbial data sets vary widely in sensitivity and precision. ISME J. 10 :1669-1681

Layeghifard et al. (2017) Disentangling Interactions in the Microbiome: A Network Perspectiv. Trends in Microbiology.
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Sample1 Sample2 Sample3 Sample4 Sample5 Sample6

OUT1 2519 2354 1074 2 452 1233

OUT2 2520 1158 1287 1 34 3184

OUT3 106 4 2 0 0 0

OUT4 490 82 148 0 0 22

OUT5 120 73 111 0 0 133

OUT6 13 1 6 0 0 0

OUT7 9 0 0 0 0 0

OUT8 813 415 142 0 0 808

OUT9 45 2 7 0 0 0
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  ---------------------------------------------
  OTU-Table Summary
  ---------------------------------------------
  25414720  Reads (25.4M)
       436  Samples
      8036  OTUs
  ---------------------------------------------
   3503696  Counts
   3433317  Count  =0  (98.0%)
     12008  Count  =1  (0.3%)
     36286  Count >=10 (1.0%)
  ---------------------------------------------
        0  OTUs found in all samples (0.0%)
  ---------------------------------------------
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x2 <- sample(1:100, 10, replace = TRUE)
y2 <- sample(1:100, 10, replace = TRUE)
cor(x2,y2)
# 0.466

x1 <- sort(sample(1:100, 10, replace = TRUE), TRUE)
y1 <- sort(sample(1:100, 10, replace = TRUE), TRUE)
cor(x1,y1)
# 0.883

x3 <- c(x2, rep(0,20))
y3 <- c(y2, rep(0,20))
cor(x3,y3)
# 0.790
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Regression-Based Methods
Network inference methods based on pairwise association metrics such as Bray–Curtis and Pearson 
coefficient are not able to capture more complex forms of polymicrobial interactions. One obvious 
alternative is to use multiple regression analysis to infer the abundance of one species from the 
combined abundances of other taxa. Regression-based methods suffer from overfitting that 
increases with the number of predictor variables. Overfitting can be remedied by using sparse 
regressionand cross-validation.

Layeghifard et al. (2017) Disentangling Interactions in the Microbiome: A Network Perspectiv. Trends in Microbiology.

Probabilistic Graphical Models (PGMs)
PGMs deal with uncertainty and complexitythrough the use of probability theory and graph 
theory, respectiv. Bayesian networks and Markov networks are the most popular graphical models 
used.
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Network Construction Methods Robust to Compositionality
The concerns over correlation-based analyses have led to the development of methods that are 
robust to compositionality.  

SparCC (Sparse Correlations for Compositional data), for example, is a technique that uses linear 
Pearson’s correlations between the log-transformed components to infer associations in composi- 
tional data (Friedman 2012). ➜ R package: install.packages("SpiecEasi") 

SPIEC-EASI (SParse InversE Covariance Estimation for Ecological Association Inference) combines 
data transformations developed for compositional data analysis with a graphical model inference 
framework with the assumption that the underlying ecological association network is sparse (Kurtz et 
al 2015). ➜ R package: install.packages("SpiecEasi") 

REBACCA (Regularized Estimation of the BAsis Covariance based on Compositional dAta) estimates 
the correlations between pairs of basis abundance using the log ratiotransformation of count or 
proportional data (Ban et al. 2015). ➜ R script

Friedman (2012) Inferring correla- tion networks from genomic survey data. PLoS Comput Biol 8:e1002687. 

Kurtz et al. (2015) Sparse and compositionally robust inference of micro- bial ecological networks. PLoS Comput Biol 11:e1004226. 

Ban et al. (2015) Investigating microbial co-occurrence patterns based on metagenomic compositional data. Bioinformatics 31: 3322-3329.
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Network Construction Methods Robust to Compositionality

ReBoot, a permutation-renormalization bootstrap method to evaluate the significance of e.g. 
Pearson's correlation coefficients es; plugin tool called CoNet (Faust et al. 2012). ➜ Cytoscape plugin 

http://www.raeslab.org/software/conet.html 

CCLasso (Correlation inference for Compositional data through Lasso) uses least squares with L1 
penalty after log ratio transformationfor raw compositional data to infer the correlations among 
microbes through a latent variable model (Fang et al. 2015). ➜ R script 

MENAP (Molecular Ecological Network Analysis Pipeline) is a Random Matrix Theory (RMT)-based 
method that is developed to address the issue of arbitrary choice of threshold used to include or 
exclude interaction from ecologicalnetworks (Deng et al. 2012). ➜ http://129.15.40.240/mena/ 

MInt (Microbial Interaction) is a Poisson-multivariate normal hierarchical model to find taxon-taxon 
interactions from metagenomic count data by controlling for confounding predictors at the Poisson 
layer, and capturing direct microbial interactions at the multivariate normal layer, using an‘1 
penalized precision matrix (Biswas et al. 2015). Note: MInt was shown to outperform SparCC and graphical lasso 

methods in both synthetic and experimental experiments. ➜ R package: install.packages("MInt")

Faust et al.  (2012) Microbial co-occurrence relationships in the human microbiome. PLoS Comput Biol 8:e1002606. 

Fang et al. (2015) CCLasso: correlation inference for compositional data through Lasso. Bioinformatics 31: 3172-3180. 

Deng et al. (2012) Molecular ecological network analyses. BMC Bioinformatics 13:113. 

Biswas et al. (2015) Learning microbial interaction networks from metagenomic count data. in Research in Computational Molecular 

Biology, Springer, pp. 32-43.

http://www.raeslab.org/software/conet.html
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OTU1

OTU2

OTU3

Hub (Keystone) Detection

OTU4
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The importance of nodes can take a variety 
of meanings depending on the context and 
application. For example, the most 
important node may be the most significant 
member in the microbial community, the 
most essential microbe for community 
stability, the etiological agent of disease, or 
the organism responsible for disease 
transmission.

Keystones
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Prominence measures : 

• Degree 
• Closeness 
• Betweenness 
• Eigenvector 
• Bonacich power 
• Flow betweenness 
• Load 
• Information 
• Stress 
• Harary graph 
• Bonacich alpha 
• Kleinberg authority 
• Kleinberg hub 
• PageRank 

*bold: available in igraph
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Information about the relative importance of nodes and edges in a graph can 

be obtained through centrality indices. 

A node with higher centrality would have more control over the network, 

because more information will pass through that node.

• Characterization by network flows (e.g. paths, walks) 

• Characterization by walk structure (e.g. betweenness centrality)

A

B

C

D

edge (or link)

nodes
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BC(v) = u ,v∈V (
suw (v)
suw

)∑

The vertex (node) betweeness centrality of a vertex v is defined as:

suw: total number of shortest paths between node u and w 

suw(v): total number of shortest paths between node u and w that pass though v

suw suw (v)
suw (v)
suw

(1,2) 1 0 0
(1,4) 1 1 1
(1,5) 1 1 1
(1,6) 1 1 1
(1,7) 1 1 1
(2,4) 1 1 1
(2,5) 1 1 1
(2,6) 1 1 1
(2,7) 1 1 1
(4,5) 1 0 0
(4,6) 1 0 0
(4,7) 1 0 0
(5,6) 1 0 0
(5,7) 1 0 0
(6,7) 1 0 0

8

3

1 2

4

5

67

v

1 2 3 4 5 6 7

degree 2 2 3 2 3 2 2

BC(v) 0 0 8 9 8 0 0
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suw suw (v)
suw (v)
suw

(B,C) 1 0 0

(B,D) 1 0 0

(B,E) 1 1 1

(B,F) 1 0 0

(C,D) 1 0 0

(C,E) 1 0 0

(C,F) 1 0 0

(D,E) 2 1 0.5

(D,F) 1 0 0

(E,F) 1 0 0

1.5

A

suw: total number of shortest paths between node u and w 

suw(v): total number of shortest paths between node u and w that pass though v
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A B C D E F

degree 2 3 2 3 2 2

BC(v) 1.5 2.5 1.0 2.5 0.0 1.5

BC: betweeness centrality



MDA ▷ Microbiota Network

24.01.20 | MDA20 | JCW!52

A) Betweenness centrality 
B) Closeness centrality 
C) Eigenvector centrality 
D) Degree centrality 
E) Harmonic Centrality 
F) Katz centrality
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OTU1

OTU2

OTU3

Community (Cluster) Detection
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Community detection: A variety of subgroup identification algorithms and heuristics that 
define groups not just based on the internal ties have been developed. These approaches 
vary in their details, but they are all designed to identify internally cohesive subgroups 
that are somewhat separated or isolated from other groups or nodes. These approaches 
are sometimes called community detection algorithms. 

Community detection functions in igraph: 

• Edge-betweenness 
• Leading eigenvector 
• Fast-greedy 
• Louvain 
• Walktrap 
• Label propagation 
• InfoMAP 
• Spinglass 
• Optimal

OTU1

OTU2

OTU3
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Edge betweennessis a popular method in which links are removed in the decreasing 
order of their betweenness scores (Girvan and Newman 2002).

Girvan and Newman (2002) Community structure in social and biological networks. PNAS 99: 7821-7826.
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The concept of assortativity was introduced by Newman in 2002 and is 
extensively studied since then. Assortativity is a graph metric. It 
represents to what extent nodes in a network associate with other nodes 
in the network, being of similar sort or being of opposing sort. Generally, 
the assortativity of a network is determined for the degree (number of 
direct neighbours) of the nodes in the network. 

Newman (2002) Assortative mixing in networks. Phys. Rev. Lett., Vol. 89(20).
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Clusters can reveal important nodes and correlations to environmental factors: 

“We applied WGCNA to the relative abundance tables of eukaryotic, prokaryotic and viral 
lineages and identified unique subnetworks significantly associated with carbon export within 
each data set."

•WGCNA (Weighted Correlation Network Analysis) 

•MCL (Markov Cluster Algorithm) 

•Walktrap

network analysis - network structure analysis - clustering

Guidi et al. (2016). Plankton networks driving carbon export in the oligotrophic ocean. 
Nature, 532(7600), 465.

https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/index.html

https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/
https://micans.org/mcl/
https://www.rdocumentation.org/packages/igraph/versions/0.5.1
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Robustness of microbial networks - Permutation testing 

Guidi et al. (2016). Plankton networks driving carbon export in the oligotrophic ocean. 
Nature, 532(7600), 465.

a) Permute original data  
b) Test robustness of edges  
c) Remove unstable edges 
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https://www.rdocumentation.org/packages/SpiecEasi/versions/0.1.4

SPIEC-EASI (SParse InversE Covariance Estimation for Ecological Association Inference) 
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Paliy and Shankar (2016) Application of multivariate statistical techniques in microbial ecology. Molecular Ecology 25, 1032–1057
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When defining nodes, limitations in marker gene data (e.g. 16S 

rRNA) can be problematic. Various aspects of these data are also 

relevant to network construction: resolution, varying sequencing 
depth, compsitionality, and sparsity. 
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Resolution - Qualitative issue of species assignment caused by the variation- and 

length-dependend resolution strength of the amplicon, the limitation or errors of 

the reference database, the shortcommings of the annoation or “clustering” 

method.  

Liu et al. (2015) Genomic insights into the taxonomic status of the Bacillus cereus group. Sci Rep 5:14082. 

A total of 1007 16S rRNA gene sequences were analyzed, sharing all sites from positions 
352 to 1051 in the complete 16S rRNA gene; more sequences could not be considered 
due to the condition of some of the draft genome sequences. The x-axis indicated the 
pairwise similarity (in %) of the 16S rRNA gene sequences, whereas the y-axis represents 
the proportion of each respective similarity value.

The 16S rRNA gene sequence was not sufficient to 
differentiate the bacteria within Bacillus cereus group due 
to its high conservation. 
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Sequencing Depth & Compsitionality - Technical variation during sequencing 

results in varying sequencing depths. To reduce/remove sequencing depth 

variation, counts should be converted either into relative abundances, rarefied or 

normalized. As a result, we are dealing with compositional rather than absolute 

data. Certain statistical methods, such as correlations, can lead to erroneous 

results when applied to compositional data.
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0.2

0.3

0.5

Relative abundances could be converted into absolute 
abundances when the total number of microorganisms in a 
sample is known by spiking with DNA or qPCR.

qPCR: 5E+06 gene copy numbers 

⟹ 1.5E+06

⟹ 1.0E+06

⟹ 2.5E+06
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Sparsity - Microbiome data are zero-rich. While log-ratios (network inference  

in general) can be used to tackle compositionality it is sensitive to zeros (i.e. 

negative infinities). Pseudo-counts could resolve the issue but might impact the 

results as they alter the covariance structure of data. Alternative treatments of 

zeros have been proposed but are problematic since zeros could indicate 

absence or undersampling. 

set.seed(190801)
x2 <- sample(1:100, 10, replace = TRUE)
y2 <- sample(1:100, 10, replace = TRUE)
cor(x2,y2)
# 0.466

x1 <- sort(sample(1:100, 10, replace = TRUE), TRUE)
y1 <- sort(sample(1:100, 10, replace = TRUE), TRUE)
cor(x1,y1)
# 0.883

x3 <- c(x2, rep(0,20))
y3 <- c(y2, rep(0,20))
cor(x3,y3)
# 0.790
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Weiss et al. (2016) Correlation detection strategies in microbial data sets vary widely in sensitivity 
and precision. ISME J 10:1669–81. 

The best correlation technique depending upon data set characteristics and 
desired ecological relationship discovery.
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Weiss et al. (2016) Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME J 10:1669–81. 

Summary of strengths and weaknesses for each correlation technique
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Jiang et al. (2019) Microbiome Multi-Omics Network Analysis: Statistical Considerations, Limitations, and Opportunities. Front. Genet.
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Erdös and Rényi (1960) On the evolution of random graphs. Publication of the Mathematical Institute of the Hungarian 
Academy of Sciences.

The first mathematically described network model is the random network 
introduced in 1960 by Paul Erdös and Alfred Rényi. This model assumes a 
network of randomly interconnected nodes. The nodes’ degrees follow a 
Poisson distribution and most nodes have a number of connections 
comparable to the network’s average degree. Most natural networks show a 
power-law degree distribution. A few nodes have a very large number of 
connections, while other nodes have no or few connections. 



The concerns over correlation-based analyses have led to the development of 

methods that are robust to compositionality.  

SparCC (Sparse Correlations for Compositional data), for example, is a new 

technique that uses linear Pearson’s correlations between the log-transformed 

components to infer associations in composi- tional data (Friedman 2012).  

SPIEC-EASI (SParse InversE Covariance Estima- tion for Ecological Association 

Inference) is another statistical method for the inference of microbial ecological 

networks that combines data transformations developed for compositional data 

analysis with a graphical model inference framework with the assumption that the 

underlying ecological association network is sparse .  

Friedman J, Alm EJ (2012) Inferring correla- tion networks from genomic survey data. PLoS Comput Biol 

8:e1002687. 

Kurtz ZD, Muller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA (2015) Sparse and compositionally robust 

inference of micro- bial ecological networks. PLoS Comput Biol 11:e1004226. 



An alternative approach uses probabilistic graphical models (PGMs), which provides 

a probability theory framework based on discrete data structures in computer 

science, to measure uncer- tainty in high dimensional data.  

One method, EBIC- glasso, estimates sparse undirected graphical models for 

continuous data with multivariate Gaussian distribution through the use of L1 (lasso) 

regularization before using an extended Bayesian informa- tion criteria (EBIC) to 

select the most fitting model.  

Tibshirani R (2018) Regression shrinkage and selection via the lasso: a retrospective. J Roy Stat Soc Ser B (Stat 

Method) 73:273–282. 



Hubs are nodes in the network that have a significantly larger number of links 

compared to the other nodes in the network. A hub in a microbiome network can 

be considered as an equiva- lent to a keystone species in the microbial community.  

Two popular approaches have been used to detect keystone taxa from microbiome 

networks: centrality indices and link-analysis methods.  

Tibshirani R (2018) Regression shrinkage and selection via the lasso: a retrospective. J Roy Stat Soc Ser B (Stat 

Method) 73:273–282. 



igraph and qgraph are network analysis tools that can be used in R to construct, 

simulate, analyze, and visualize networks.  

The vegan package will be used to calculate pairwise (dis)similarity/distance 

between OTUs as well as to permute the OTU table.  

The MCL package is needed for cluster detection and SpiecEasi will be used to 

construct microbiome networks. 



The effect of P treatment on abundance of each OTU was investigated with edgeR 

(Robinson et al., 2010a) on TMM-normalized data (Robinson & Oshlack, 2010) and 

visualized with ternary plots. TMM-normalized data was used to calculate Spearman 

rank correlations between OTUs for co-occurrence networks. Positive (<0.7) and 

significant relationships were visualized with igraph (Csardi & Nepusz, 2006).  

Scripts, functions and support files are available as Notes S3. The Figure S1 

visualizes the workflow of analysis steps.
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A wide range of methods, with varying levels of efficiency and accuracy, have been 
used to construct networks based on microbiome data. The simplest methods are 
(dis)similarity- or distance-based techniques. The most popular methods, 
however, are correlation-based techniques, where significant pairwise associa- 
tions between operational taxonomic units (OTUs, a grouping of organisms 
circumscribed by a specified level of DNA sequence similarity at a marker gene) are 
detected using a correlation coefficient such as Pearson’s correlation coefficient or 
Spearman’s non-parametric rank correlation coefficient.  

The use of correlation coefficients to detect dependencies between members of a 
microbiome suffers from limitations such as detecting spurious correlations due to 
compositionality, and being severely underpowered owing to the relatively low 
number of samples. 

Layeghifard et al. (2018) Constructing and Analyzing Microbiome Networks in Microbiome Analysis: Methods and 

Protocols, Methods in Molecular Biology, vol. 1849.


