

Network analysis \sim research question

Network analysis \sim research question

Research question \sim type of correlation(s)

positive and/or negative correlations?

Network analysis \sim research question

Network
b0TU86 b0TU62 $0.89239259 .095391 \mathrm{e}-10$ b0TU66 b0TU62 $0.91515595 .922973 \mathrm{e}-11$ bOTU66 bOTU86 $0.85239853 .254480 \mathrm{e}-08$ bOTU208 bOTU62 $0.84946994 .054831 \mathrm{e}-08$ bOTUZ08 bOTU86 $0.93424803 .072653 \mathrm{e}-12$

Disclaimer:
A network does not depict the microbial interactions, but groups microbes by their abundance "behaviour".

Data structure (Network analysis ~ research question)

Within or between sample groups?

Abundance microbe 2 ARTICLE

Agricultural intensification reduces microbial network complexity

 and the abundance of keystone taxa in rootsSamiran Banerjee \odot^{1} - Florian Walder \odot^{1}. Lucie Büchi ${ }^{23}$. Marcel Meyer ${ }^{1}$. Alain Y. Held ${ }^{1}$. Andreas Gattinger ${ }^{4.5}$. Thomas Keller ${ }^{1 / 6}$. Raphael Charles ${ }^{2,7}$. Marcel G. A. van der Heijden $0^{1,8}$

Received 21 September 2018 / Revised. 4 February 2019 / Accepted. 17 February 2019

- The Author(s) 2019. This artide is published with open access

Example for 'within vs. between sample groups'

FAQs:

- Wheat roots
- Fungal community profiles by PacBio(ITS1F---ITS4)
- Data structure: 3 types of fields (conventional, organic and no-till), 20 replicates each
- Research question: root microbiome NW ~ farming practices

Example for 'within vs. between sample groups'

FAQs:

- Wheat roots
- Fungal community profiles by PacBio(ITS1F---ITS4)
- Experimental design: 3 treatments (conventional, organic and no-till fields), 20 replicates each
- Research question: root microbiome NW ~ farming practices

Network analysis:

- maximal information coefficient (MIC)
(see Reshef et al. 2011, Science)
- MIC associations with $\mathrm{P}<0.05$ after FDR correction
- Plotting with Cytoscape
-> Overall meta-network (all 60 samples)

From the caption:

across three farming systems
by fungal orders
White = positive, red = negative and
wavy lines = nonlinear relationships

FAQs:

- Wheat roots
- Fungal community profiles by PacBio(ITS1F---ITS4)
- Experimental design: 3 treatments (conventional, organic and no-till fields), 20 replicates each
- Research question: root microbiome NW ~ farming practices

Network analysis:

- maximal information coefficient (MIC)
(see Reshef et al. 2011, Science)
- MIC associations with $\mathrm{P}<0.05$ after FDR correction
- Plotting with Cytoscape
-> 3 farming-specific networks (20 samples each)

COMPARISON of network topology:
same parameters for calc.
similar number of nodes in analysis
BUT: different network patterns

Example for 'within vs. between sample groups'

FAQs:

- Wheat roots
- Fungal community profiles by PacBio(ITS1F---ITS4)
- Experimental design: 3 treatments (conventional, organic and no-till fields), 20 replic
- Research question: root microbiome NW ~ farming practices

Network analysis:

- maximal information coefficient (MIC)
(see Reshef et al. 2011, Science)
- MIC associations with $\mathrm{P}<0.05$ after FDR correction
- Plotting with Cytoscape
-> 3 farming-specific networks (20 samples each)

COMPARISON of network topology:
same parameters for calc.
similar number of nodes in analysis
BUT: different network patterns

Network analysis \sim research question

9. 095391 e b0TU66 bOTU62 $0.91515595 .922973 \mathrm{e}-11$ bOTU66 bOTU86 $0.85239853 .254480 \mathrm{e}-08$ bOTU208 bOTU62 $0.84946994 .054831 \mathrm{e}-08$ bOTUZ08 bOTU86 $0.93424803 .072653 \mathrm{e}-12$

Type of correlations

Network

1
Disclaimer:

A network does not depict the microbial interactions, but groups microbes by their abundance "behaviour".

RESEARCH

e-X ${ }^{\text {tra* }}$

Petunia- and Arabidopsis-Specific Root Microbiota Responses to Phosphate Supplementation

Natacha Bodenhausen, ${ }^{1,2}$ Vincent Somerville, ${ }^{1}$ Alessandro Desirò, ${ }^{3}$ Jean-Claude Walser, ${ }^{4}$ Lorenzo Borghi, ${ }^{5}$ Marcel G. A. van der Heijden, ${ }^{1,6,7}$ and Klaus Schlaeppi ${ }^{1,8,7}$
${ }_{2}^{1}$ Division of Agroecology and Ervironment, Agroscope, Zurich, Switzerland
${ }^{2}$ Department of Soil Sciences, Research Institute of Organic Agriculture FiBL, Frick, Switzerland
${ }^{3}$ Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, U.S.A.
${ }^{4}$ Genetic Diversity Centre, ETH Zurich, Zurich, Switzerland
${ }^{5}$ Institute of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland
${ }^{6}$ Institute for Evplutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
${ }^{7}$ Plant-Microbe Interactions, Institute of Errvironmental Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
${ }^{8}$ Institute of Plant Sciences, University of Bern, Switzerland
Accepted for publication 27 March 2019.

Study: Root microbiota ~ P fertilization

The root microbiota of mycorrhizal plants enriches for AMF(=Glomeromycotina) under low-P

Study: Root microbiota ~ P fertilization

Can we find bacteria that share the same abundance behavior as AMF along a P gradient?

co-abundant bacteria?

 \(P_{i}\)
 low medium high
AMF
E

Network analysis - HANDS ON ! GDC: Microbiota Data Analysis Workshop, 2020
 Klaus Schlaeppi
 2020-01-22

Code and data origin

Code and data are derived from the study by Bodenhausen et al. (2019) in the Phytobiomes journal. It consists of a subset of the original analysis, is more simplified and contains additional code chunks for further under low-P, medium-P or high-P fertill microbiota profiles of the Petunia plants that were either grown

Phyteblomes Joumal + 2018 + 3.112-124

Reference to the published data

https://apsjournals.apsnet.org/doi/full/10.1094/PBIOMES-12-18-0057-R

Moptobiomes journal Home About submit journals \sim Books Publishers Home

Abstract

Phosphorus (P) is a limiting element for plant growth. Several root microbes, including arbuscular mycorrhizal fungi (AMF, have the capacity to improve plant nutrition and their abundance is known to depend on P fertility. However, how complex rootassociated bacterial and fungal communities respond to various levels of P sunolementation remains illdefined. Here we investipated the resnonses of the root-

See more details

(PERMANOVA).

Supplementary Table S3 shows effects of P treatment on species-specific beta diversity (PERMANOVA).

Supplementary Table $\$ 4$ shows statistics for OTUs that vary in abundance in response to phosphate supplementation.

Supplementary Table S5 shows network characteristics.
Supplementary Data File S1 shows comparison of PCR approaches
Supplementary Data File S2 shows bioinformatic scripts.
Supplementary Data File S3 shows data analysis in R.
Supplementary Data File $\$ 4$ shows mapping fungal endobacteria.
Supplementary Data File S5 shows comparison of ITS profiling approaches.

