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SUMMARY 62 

• Phosphorus (P) is a limiting element for plant growth. Several root microbes, 63 

including arbuscular mycorrhizal fungi (AMF), have the capacity to improve 64 

plant nutrition and their abundance is known to depend on P fertility. However, 65 

how complex root-associated bacterial and fungal communities respond to 66 

changes in P availability remains ill-defined.  67 

• We manipulated the availability of soil P in pots and compared the root 68 

microbiota of non-mycorrhizal Arabidopsis with mycorrhizal Petunia plants. 69 

Root bacteria and fungi were profiled using ribosomal operon gene fragment 70 

sequencing, we searched for P sensitive microbes and tested whether a P 71 

sensitive core microbiome could be identified. 72 

• Root microbiota composition varied substantially by P availability. A P 73 

sensitive core microbiome was not identified as different bacterial and fungal 74 

groups responded to low-P conditions in Arabidopsis and Petunia. P sensitive 75 

microbes included Mortierellomycotina in Arabidopsis, while these were AMF 76 

and their symbiotic endobacteria in Petunia. Of note, their P-dependent root 77 

colonization was reliably quantified by sequencing. 78 

• The species-specific root microbiota dynamics suggest that Arabidopsis and 79 

Petunia evolved different microbial associations under the selection pressure of 80 

low P availability. This implies that the development of microbial products that 81 

improve P availability requires the consideration of host-species specificity.  82 
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INTRODUCTION 86 

 Phosphorus (P) presents one of the key nutrients for plant growth. While a small 87 

fraction of soil P is directly available for plant uptake, the larger fraction is complexed 88 

to organic and mineral soil components and therefore inaccessible for plants. The 89 

conventional agronomic solution to increase P availability for plants relies on 90 

supplementing mineral phosphate (PO43-). However, yield optimization requires excess 91 

application of phosphate since less than thirty percent of applied P fertilizers effectively 92 

support plant growth, the rest of the applied phosphate readily transforms to plant non-93 

available P forms (Cordell et al., 2009). Such an overuse causes the rapid depletion of 94 

finite phosphorus reservoirs, is expensive and causes environmental harm, primarily 95 

with negative impacts on the aquatic environment by eutrophication of the surface 96 

water (Cordell et al., 2009; Scholz & Wellmer, 2013; Reijnders, 2014). Therefore, next-97 

generation agriculture requires novel sustainable solutions that reduce fertilizer inputs 98 

and increase the nutrient-use efficiency while maintaining high plant yields.  99 

Numerous root-associated microbes have the capacity to mobilize soil P or 100 

metabolize recalcitrant forms (Gyaneshwar et al., 2002; Jacoby et al., 2017), thereby 101 

enhancing plant performance and agricultural yield especially under nutrient limiting 102 

conditions. For fungi, there is a continuum of functionally similar associations between 103 

different groups of root fungi and their host plant species (van der Heijden et al., 2017). 104 

For instance, arbuscular mycorrhizal or ectomycorrhizal fungi are intimately connected 105 

to plant roots and support plant growth by mobilizing and transporting P from a larger 106 

soil volume and more distant pools of P thanks to their large hyphal network,  (Jakobsen 107 

et al., 1992). Aside from these classical mycorrhizal plants, also nonmycorrhizal plants 108 

such as Arabidopsis thaliana [hereafter: Arabidopsis] and Arabis alpina rely on fungal 109 

associations for nutrient acquisition (Cosme et al., 2018). They rely on beneficial fungal 110 

endophytes including Colletotrichum tofieldiae (Hiruma et al., 2016), Serendipita 111 

indica [formerly Piriformospora indica] (Yadav et al., 2010) or a fungus of the order 112 

Helotiales (Almario et al., 2017). Typically, the P availability in soil determines to 113 

which extent a plant is colonized by the fungal symbiotic partner with high levels of 114 

colonization under low-P conditions and little colonization in soils with high-P levels. 115 

In addition to fungi, many root bacteria are known to support plant nutrition with their 116 

abilities to solubilize inorganic P or to mineralize organic P (Rodrı ́guez & Fraga, 1999; 117 

Alori et al., 2017). Powerful P solubilizing bacteria include strains from the genera 118 
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Bacillus, Pseudomonas and Rhizobium; for a more comprehensive list as well as their 119 

growth effects on crops, we refer to Alori et al. (2017). While a wide range of individual 120 

rhizosphere microbes is known to support plant P nutrition, the effects of P availability 121 

on the overall root microbiota remains less understood. A deeper understanding of 122 

interactions between plants and their microbial allies in response to the bioavailability 123 

of P is needed for developing microbe-dependent P fertilization solutions (Schlaeppi & 124 

Bulgarelli, 2015; Busby et al., 2017). 125 

Interactions among microbes emerge as a critical component for the 126 

maintenance of host-microbial homeostasis and for plant performance (Hassani et al., 127 

2018). Inter-kingdom microbial associations occur in the plant root microbiota as for 128 

instance root fungi hosting endobacteria in their cells (Desirò et al., 2014). Such ancient 129 

fungi-endobacteria interactions (Bonfante & Desirò, 2017) include root fungi of the 130 

Mucoromycota (Spatafora et al., 2017) that host diverse bacterial endosymbionts 131 

related to Burkholderia or Mycoplasma. An example of Burkholderia-related 132 

endobacteria includes Candidatus Glomeribacter gigasporarum that is hosted by a 133 

Glomeromycotina fungus (Bianciotto et al., 2003). Mycoplasma-related endobacteria 134 

have a broader host range with presence in Glomeromycotina (Naumann et al., 2010), 135 

Mortierellomycotina (Desirò et al., 2018) and Mucoromycotina (Desirò et al., 2015). 136 

The occurrence and functional contribution of fungal endobacteria adds a further level 137 

of complexity to the interactions of plant with and among their associated microbes.  138 

Plants are more and more recognized in context with their microbial 139 

communities, where a multitude of microbes collectively function as a microbiome. P 140 

fertilization as well as P depletion are known to induce shifts in soil microbial 141 

communities (Wakelin et al., 2012; Leff et al., 2015; Huang et al., 2016; Bergkemper 142 

et al., 2016; Ikoyi et al., 2018). For example, grassland soil microbes consistently 143 

responded to phosphate inputs with compositional community changes, as for instance 144 

mycorrhizal fungi, oligotrophic bacteria and methanogenic Archaea decreased in 145 

relative abundance with nutrient additions (Leff et al., 2015). While the responses of 146 

soil microbial communities to varying levels of different sources of P have been well 147 

studied, the plant root-associated microbial communities have received less attention 148 

(Silva et al., 2017; Almario et al., 2017; Robbins et al., 2018). Robbins et al., (2018) 149 

investigated the effects of different levels of P fertilization on the Arabidopsis 150 

rhizosphere and root microbiota. While phosphate applications had little effects on 151 

microbial diversity, they affected more strongly the plant-associated microbiota 152 
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compared to bulk soil communities, suggesting plant-mediated cues for structuring the 153 

plant microbiota in response to the nutritional status. The authors noted a weak P-154 

fertilization effect on root communities that was manifested by low-abundant root-155 

associated microbes. This suggests P to be a minimal driver in shaping microbial 156 

communities compared to larger drivers such as compartment (soil vs. rhizosphere, 157 

rhizoplane, and roots) or soil type (soils differing chemically, physically and with 158 

regard to their microbiota; Hacquard et al., 2015). The work on model non-mycorrhizal 159 

plants revealed subtle responses of the root microbiota to the availability of soil P; 160 

further work is needed to test whether mycorrhizal plants exhibit stronger root 161 

microbiota responses thanks to their colonizing symbionts.  162 

Petunia x hybrida [hereafter: Petunia] is a model plant that is commonly used 163 

for investigating the symbiosis with arbuscular mycorrhizal fungi (AMF, Wegmüller et 164 

al., 2008; Breuillin et al., 2010). Due to its fast life cycle, modest size and the 165 

availability of genetic tools made, Petunia is also a model to study plant development 166 

(Vandenbussche et al., 2016), plant nutrition  (Liu et al., 2018) and hormonal signaling 167 

(Hamiaux et al., 2012). Petunia belongs to the Solanaceae family, thus is related to 168 

tomato, potato and eggplant so that root microbiota knowledge may be transferable to 169 

these staple food crops. We therefore chose Petunia in comparison with non-170 

mycorrhizal Arabidopsis to study root microbiota dynamics in response to P availability 171 

in soil and how plants cope with P limiting conditions.  172 

In this study, we tested the hypothesis that the composition of the root 173 

microbiota alters depending on the P availability and we asked whether a core 174 

microbiome or plant species-specific microbiomes prevail in response to P deficiency. 175 

We expected the Petunia root microbiota to enrich for AMF under low-P conditions, 176 

whereas the Arabidopsis response to low-P remained unclear. Hence, while differential 177 

fungal responses were anticipated for the two plant species, we were interested in their 178 

bacterial responses and whether a different sets of bacteria will respond to the varying 179 

levels of P availability. A particular goal of the study was to uncover the interplay 180 

between root bacteria and fungi and we examined their co-occurrence patterns in 181 

response to the varying P availability. We expected to find potential microbial 182 

interactions and hypothesized that the root microbiota data contains paired sequence 183 

information of fungal endobacteria and their corresponding host fungi. A technical goal 184 

of this study was to quantify AMF colonization in the context of whole fungal diversity 185 
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based on DNA-based sequencing instead of the traditional morphological 186 

quantification by microscopy. 187 

This study reveals that root microbiota composition varies markedly by P 188 

availability in soil and that different fungal and bacterial groups are responsive to low-189 

P conditions in Arabidopsis and Petunia. We find co-abundant groups of candidate 190 

microbial cooperation partners, including AMF and their symbiotic endobacteria, both 191 

known to support plant growth under low-P conditions. Our work suggests that 192 

Arabidopsis and Petunia have evolved individual microbial solutions, involving 193 

multitrophic microbial interactions, to cope with low-P conditions.  194 
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MATERIAL AND METHODS 195 

PLANT GROWTH 196 

The experiment was conducted in 400 ml pots lined with a mesh (Trenn-Vlies, 197 

Windhager, Thalgau, Germany). Soil was collected on April 4th 2014 from a field site 198 

(47°26'20" N 8°31'40" E), sieved to 2 mm and stored at 4°C until use. Soil was mixed 199 

1:1 volume with sterilized quartz-sand. Chemical properties of the sand-soil mixture 200 

were analyzed at the Labor für Boden- und Umweltanalytik (Eric Schweizer AG, Thun, 201 

Switzerland): pH 6.8, 6/31/51% (clay/silt/sand) and 1.4/1.05/1.07 mg kg-1 (water-202 

extractable N/P/K).  203 

Petunia seeds were surface sterilized with 70% ethanol, washed with autoclaved 204 

water and plated on 1/2 strength Murashige and Skoog basal medium (Sigma, Buchs, 205 

Switzerland) supplemented with 1.5% sucrose and solidified with 1.5% agar. Plants 206 

were germinated under long-day conditions (16-h photoperiod) in climate chamber 207 

(Sanyo MLR-352H; Panasonic, Osaka, Japan) at 25°C and 60% relative humidity. 208 

After 7 days, seedlings were transferred to 400 ml pots filled with substrate. Plants were 209 

grown for two weeks in the same climate chamber then moved to an in-house climate 210 

chamber with same humidity, photoperiod and temperature. Plants were fertilized with 211 

a corrected Petunia nutrient solution (Reddy et al., 2007), prepared with three 212 

concentrations of phosphate: 0.03 mM KH2PO4 (low-P), 1 mM KH2PO4 (medium-P) 213 

and 5 mM KH2PO4 (high-P). Each plant received 300 ml of the solution over the last 214 

six weeks before harvest. We conducted two separate experiments using the same 215 

treatments and growth conditions, the first to collect the plant root samples (DNA 216 

analyses and microscopy) and shoot biomass and a second experiment to quantify leaf 217 

nutrient levels. 218 

SAMPLE COLLECTION 219 

Plants were harvested at 10 weeks. The roots were separated from the shoot 220 

with a clean scalpel. The shoots were dried in a 60° C oven for dry weight analysis. The 221 

loosely attached soil was shaken from the roots, the roots were washed three times in 222 

PBS buffer (approximately 10 ml for 1 g of fresh weight) and then split into two 223 

equivalent subsamples. Samples for DNA extraction were stored at -80°C until 224 

processing. Samples for microscopy were stored in 50% ethanol. After staining with 225 

pen ink (Vierheilig et al., 1998), root length colonization was determined using the 226 
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magnified intersections method for 100 intersections per sample (McGonigle et al., 227 

1990). Soil from unplanted pots was collected by removing the top 1 cm layer and then 228 

mixing the soil below, one sample (250 mg - 500 mg) was taken from each pot. 229 

The dried shoots were weighed and milled. P and K concentrations were analyzed using  230 

inductively coupled  plasma-optical emission spectroscopy (ICP-OES) at the elemental 231 

analytic department of Agroscope according to (VDLUFA-Verlag, 2006). 232 

MICROBIOTA PROFILING 233 

The protocol for microbiota profiling, including DNA extraction, PCR, 234 

sequencing and bioinformatics, is described in detail in Methods S1. The comparison 235 

of the PCR approaches is reported in Notes S1, which contains the bioinformatic script, 236 

input data, analysis script and the markdown report. The bioinformatic analysis of the 237 

main samples of the study is documented with the scripts, parameters, support and 238 

report files in Notes S2. The raw sequencing data of the MiSeq runs and the SMRT 239 

sequencing are available from the European Nucleotide Archive ENA under the study 240 

accession PRJEB27162. 241 

STATISTICAL ANALYSES 242 

Statistical analyses were performed using R v3.3.2 (R Core Team, 2016) within 243 

Rstudio (RStudio Team, 2015). The effects of P availability on dry weight, P content 244 

and K content were assessed with a linear model. Dry weight data was log-transformed 245 

to satisfy the assumptions of the linear model (normality of residuals and 246 

homoscedasticity). To test for the effect of P availability on AMF colonization, a 247 

generalized linear model was fitted with quasibinomial distribution to account for 248 

overdispersion. Rarefaction curves were prepared with the function ‘rarecurve’ from 249 

vegan (Oksanen et al., 2018). For alpha diversity, the data was rarefied to 15’000 250 

sequences 500 times. For each subsample, several diversity indices were estimated: 251 

richness (S) is the number of OTUs, H is the Shannon index from which D=exp(H) was 252 

calculated (Jost, 2007), and Sheldon evenness is E= exp(H)/S (Sheldon, 1969). 253 

ANOVA was used to assess the effect of P a and plant species on the mean of the 500 254 

subsamples for each sample. For the rest of the analysis, the data was filtered (at least 255 

4 sequences per sample in 4 samples) to remove low abundant OTUs. The effects of P 256 

availability and plant species on community composition were assessed with 257 

permutational multivariate analysis of variance (PERMANOVA) of Bray-Curtis 258 

dissimilarities and visualized with principal coordinate analysis (PCoA) using vegan 259 
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and phyloseq (McMurdie & Holmes, 2013). The effect of P availability on abundance 260 

of each OTU was investigated with edgeR (Robinson et al., 2010) on TMM-normalized 261 

data (Robinson & Oshlack, 2010) and visualized with ternary plots. TMM-normalized 262 

data was used to calculate Spearman rank correlations between OTUs for co-occurrence 263 

networks. Positive (r>0.7) and significant relationships (P<0.001) were visualized with 264 

igraph (Csardi & Nepusz, 2006). Scripts, functions and support files are available as 265 

Notes S3. Figure S1 visualizes the workflow of the analysis steps. 266 

IDENTIFICATION OF ENDOBACTERIA  267 

We describe the identification of endobacteria OTUs using a phylogenetic 268 

placement approach in Methods S1. Briefly, we pre-selected candidates in the 269 

microbiome dataset using two approaches and then validated their representative 270 

sequences by fine mapping to a reference tree of known endobacteria sequences. The 271 

first approach was based on sequence clustering and for the second, we employed co-272 

occurrence characteristics from network analysis. Command line and analysis code in 273 

R (including markdown report) as well as the database with curated endobacteria 274 

16S rDNA reference sequences are available as Notes S4.   275 
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RESULTS 276 

EXPERIMENTAL SETUP FOR MANIPULATING PHOSPHATE LEVELS  277 

We investigated the dynamics of the root-associated microbiota to the 278 

availability of soil P and compared the non-mycorrhizal model species Arabidopsis to 279 

Petunia, which forms symbiosis with AMF. Plants were sown in a field soil that was 280 

amended with sand and we manipulated soil P availability by applying low, medium or 281 

high levels of phosphate. Unplanted pots were included as controls to collect soil 282 

samples. We first confirmed the effectiveness of the applied phosphate levels and found 283 

that phosphate treatments positively affected plant growth (Fig. 1a), increased P levels 284 

in plant leaves (Fig. 1b), while reducing the AMF colonization levels in Petunia roots 285 

(Fig. 1c). As we manipulated soil P levels using simple K salts, we tested if the low-P 286 

condition would also be limited in potassium. Since the plants growing in low-P 287 

conditions were sufficiently supplied with K (Fig. 1d), we concluded that the simple 288 

approach of using KH2PO43- solutions permitted to establish a P gradient without 289 

causing K limiting conditions.  290 

PROFILING SOIL AND ROOT MICROBIAL COMMUNITIES 291 

First, we evaluated the following PCR approaches to profile root fungal 292 

communities: ITS1F and ITS2 (McGuire et al., 2013a), fITS7 and ITS4 (Ihrmark et al., 293 

2012a) and ITS1F with the reverse complement of fITS7. Community profiles were 294 

inspected for the proportions of plant and AMF sequences as well as for fungal 295 

diversity. We selected ITS1F and ITS2, because this PCR approach captured low levels 296 

of plant sequences at good coverage of AMF and highest levels of taxa richness (Fig. 297 

S2, See Notes S1 for a detailed comparison of the PCR approaches).  298 

We then characterized soil and plant root-associated bacterial and fungal 299 

communities by sequencing amplicons of the 16S rRNA gene and the internal 300 

transcribed spacer (ITS) region 1, respectively. We obtained 2’196’310 high-quality 301 

bacteria sequences with a median of 36’718 sequences per sample and 3’809’350 high-302 

quality fungal sequences with a median of 54’337 sequences per sample. Bacterial and 303 

fungal sequences clustered into 3’701 bacterial operational taxonomic units (bOTUs) 304 

and 1’688 fungal OTUs (fOTUs), respectively.  305 

Soil bacteria comprised abundant Acidobacteria, Actinobacteria, Firmicutes, 306 

Deltaproteobacteria and Verrucomicrobia, whereas plant roots were mainly colonized 307 
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by Betaproteobacteria, Gammaproteobacteria and Bacteroidetes (Fig. 2). The bacteria 308 

community composition at Phylum rank was not markedly different between 309 

Arabidopsis and Petunia.  310 

For fungi, Ascomycota and Basidiomycota were abundant in soil and Petunia 311 

root samples (Fig. 2). Mortierellomycotina were particularly abundant in soil fungal 312 

communities, whereas a high number of Glomeromycotina was found in Petunia roots, 313 

which varied as a function of the applied phosphate levels. Consistent with the levels 314 

of AMF root colonization measured by microscopy (Fig. 1c), Glomeromycotina were 315 

most abundant in Petunia roots under low-P conditions and decreased in proportion 316 

with increasing P availability (Fig. 3a). The cumulative relative abundance of 317 

Glomeromycotina sequences was significantly positively correlated (adj. R2 = 0.59; P 318 

< 0.001) with the rate of AMF root colonization as assessed by microscopy (Fig. 3b). 319 

We noted that the root fungal community of Arabidopsis was dominated by sequences 320 

belonging to Olpidiomycotina. Most of these sequences belonged to fOTU1 (assigned 321 

to Olpidium brassicae), which accounted for 94.50% of the sequences in Arabidopsis 322 

but only 0.79% of the sequences in Petunia samples. To exclude that this is a technical 323 

peculiarity of MiSeq, we confirmed the dominance of O. brassicae by sequencing the 324 

entire ITS region (PCR primers ITS1F and ITS4) using SMRT sequencing (Fig. 2c). 325 

We refer to the Notes S5 for the detailed comparison of the sequencing approaches. In 326 

brief, the SMRT-sequencing based community profiles also avoided amplifying plant 327 

sequences while abundantly capturing the AMF. Both methods have their inherent 328 

technical advantages with the MiSeq approach offering enhanced throughput and 329 

sampling depth, whilst the SMRT-sequencing method provides enhanced taxonomic 330 

resolution. Albeit a few quantitative differences, the two approaches reproduce overall 331 

similar taxonomic compositions and revealed remarkably similar biological patterns 332 

(Notes S5). 333 

PHOSPHATE INDUCED VARIATION IN MICROBIAL DIVERSITY  334 

In the following, we used the MiSeq-based fungi profiles as they were obtained 335 

using the same sequencing platform as the bacteria and because of the enhanced 336 

sequencing depth. Bacteria and fungi richness was highest in unplanted soil, followed 337 

by Petunia and then Arabidopsis roots (Fig. S3). ANOVA confirmed the effect of plant 338 

species on alpha diversity for both bacteria and fungi and further uncovered an effect 339 

by the different P availability on the bacteria community (Fig. S4, Table S1). Bacterial 340 
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richness, diversity and evenness were generally higher in Petunia compared to 341 

Arabidopsis and generally increased with increasing P concentrations. With the 342 

dominance of O. brassicae, fungal richness, diversity and evenness were markedly 343 

lower in Arabidopsis compared to Petunia.  344 

Utilizing principal coordinate analysis (PCoA) of Bray-Curtis dissimilarities, 345 

we found compositional differences in microbial communities due to the tested 346 

experimental factors sample type, plant species and P availability (Fig. 4). Consistent 347 

with previous work (Bulgarelli et al., 2012; Hartman et al., 2018), bacteria and fungi 348 

differed markedly between the sample types of unplanted soil and roots (Fig. S5). With 349 

regard to plant species, fungal communities were more divergent between Arabidopsis 350 

and Petunia roots compared to bacteria communities (Fig. 4), possibly reflecting their 351 

opposite behavior with AMF. Permutational multivariate analysis of variance 352 

(PERMANOVA), finding significant plant species effects on both bacterial and fungal 353 

communities (Table S2), confirmed that plant species explained more variation for 354 

fungi (53% of variation) compared to bacteria (14%).  355 

The effects of P availability were apparent in bacterial communities of both 356 

Arabidopsis and Petunia by clustering following the gradient in phosphate levels (Fig. 357 

4A), whereas for fungi, this was only manifested in Petunia (Fig. 4B). PERMANOVA 358 

confirmed a significant P availability effect for the bacteria (Table S2). To approximate 359 

the effect sizes of P availability on the Petunia and Arabidopsis root microbial 360 

communities, we inspected the R2 values of PERMANOVA applied to the data of each 361 

plant separately. While P availability explained 14.1% and 13.3% of variation in 362 

Petunia root bacterial and fungal communities, respectively, it accounted for 15.0% and 363 

21.7% of variation in the Arabidopsis root microbial communities (Table S3). This 364 

indicates that varying P availability in soil can account for about 15% of variation in 365 

plant root microbiota composition. 366 

IDENTIFYING PHOSPHATE SENSITIVE MICROBES  367 

Next, we identified P sensitive OTUs – OTUs being differentially abundant 368 

between low and high-P conditions – using edgeR (Robinson et al., 2010). In total we 369 

found 2.2% bOTUs and 6.3% fOTUs responsive to the varying P availability in Petunia, 370 

while 3.1% bOTUs and 13% fOTUs were sensitive in Arabidopsis (Fig. 5a, Table S4). 371 

With the exception of four bOTUs, different sets of P sensitive bacteria and fungi OTUs 372 

were found for Arabidopsis and Petunia, suggesting that the two plant species have 373 
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differential microbial responses to low-P conditions. Among the four shared bOTUs 374 

was a prominent Dechloromonas sp. (bOTU2), which is more abundant under low-P 375 

conditions in both plant species (Fig. 5b). Bacteria from different taxonomic lineages 376 

were abundant under low or high-P conditions (Table S4). The most abundant 377 

Arabidopsis root bacteria included also Burkholderiales, Bdellovibrionales and 378 

Rhodocyclales under low-P conditions, whereas taxa from the Chthoniobacterales, 379 

Planctomycetales and Verrucomicrobiales were enriched under high-P conditions. 380 

Under low-P conditions, the abundant Petunia root bacteria included members of the 381 

Burkholderiales and Rhodocyclales, whereas under high-P conditions, a slightly 382 

different set of bacteria, including a Flavobacterium sp. (Flavobacteriales), a Tahibacter 383 

sp. (Xanthomonadales) and members of the Verrucomicrobiales were abundant. 384 

Examples of highly abundant and low-P specific Burkholderiales and Rhodocyclales 385 

members include a Dechloromonas sp. (bOTU2) and a Candidatus Accumulibacter 386 

(bOTU13, Fig. 5b). Among the Petunia root bacteria, which are enriched under low-P 387 

conditions, we noticed an bOTU assigned to Candidatus Glomeribacter gigasporarum 388 

(bOTU134, Fig. 5b), which presents an endobacterium associated with lineages in the 389 

AMF family Gigasporaceae (Bianciotto et al., 2003).  390 

Similar to bacteria, different fungal lineages responded to low or high-P 391 

conditions in Arabidopsis and Petunia (Table S4). In Arabidopsis, besides many low 392 

abundant and often taxonomically poorly resolved fungi, the distinct group of 393 

Mortierellomycotina (e.g., fOTU7, Fig. 5c) was enriched under low-P conditions. 394 

Under high-P conditions, the abundant fungi O. brassiceae (Olpidiales, fOTU2, Fig. 395 

5c), Hygrophoraceae sp. (Agaricales, fOTU10) and Cadophora sp. (Helotiales, 396 

fOTU14) were found besides numerous low abundant fOTUs. While in Petunia only a 397 

handful of diverse and low abundant fungi were enriched under high-P conditions, we 398 

found a large group of 28 mycorrhizal fOTUs enriched in the low-P treatment (Table 399 

S4). These mycorrhizal fOTUs belonged mostly to the order Glomerales and included 400 

numerous abundant members such as Funneliformis and Glomus spp. (e.g., fOTU6 in 401 

Fig. 5c). 402 

PHOSPHATE-INDUCED DYNAMICS IN MICROBIAL ABUNDANCE  403 

Finally, we utilized co-occurrence network analysis to find pairs or groups of 404 

microbes with a similar abundance behavior along the gradient of plant-available P. 405 

Co-abundance presents a pre-requisite for cooperation among microbes and we 406 
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speculated to identify possible candidate cooperation partners that may contribute to 407 

support plant growth under low-P conditions. Figure 6a visualizes the significant 408 

positive pairwise correlations between root microbiota members (bOTU-bOTU, fOTU-409 

fOTU and bOTU-fOTU) of Petunia and Arabidopsis growing in conditions with low, 410 

medium or high-P availability. We then partitioned the network into discrete 411 

community modules and mapped the P-sensitive bOTUs and fOTUs into the network 412 

and modules. While we did not find groups of co-occurring OTUs (=modules) that were 413 

responsive to high-P conditions, we found two major modules, ‘M1’ and ‘M26’, that 414 

comprised high proportions of P-responsive OTUs (Fig. 6b) being specifically 415 

abundant under low-P conditions (Fig. 6c). The module ‘M1’ comprised only bacteria, 416 

mainly belonging to the Betaproteobacteria orders Burkholderiales and Rhodocyclales 417 

(Table S5). In contrast, the module ‘M26’ grouped a set of five taxonomically diverse 418 

bacteria lineages with a large set of fOTUs primarily belonging to the order Glomerales 419 

(Table S5). These fOTUs represented almost all AMF fOTUs in the dataset (Table S5) 420 

and interestingly, they co-occurred with the Candidatus Glomeribacter bOTU134. 421 

The same analysis was conducted for Arabidopsis and revealed a module ‘M27’ 422 

with co-occurring bacteria and fungi OTUs that were specifically abundant under high-423 

P conditions (Fig. 6, Table S5). This module grouped diverse bacteria members 424 

including Planctomycetes and Verrucomicrobia and a diverse set of fungi. The module 425 

‘M19’ held low abundant and taxonomically diverse bacteria and fungi that favored 426 

intermediate P-levels. The module ‘M4’ comprised abundantly co-occurring bacteria 427 

and fungi under low-P conditions, belonging mainly to diverse Proteobacteria and 428 

Ascomycota or unknown fungi, respectively. With the exception of a few bacteria, the 429 

low-P responsive modules of Arabidopsis and Petunia had specific compositions (Fig. 430 

6d), which is consistent with the species-specific root microbiota dynamics to low-P 431 

condition.  432 

Microbes that simultaneously co-occur with many others are often referred to 433 

keystone taxa as they may play an important ecological role by determining community 434 

dynamics and microbiome functioning (Banerjee et al., 2018). We identified keystone 435 

OTUs, defined based on their high degree of co-occurrence, for the Arabidopsis and 436 

Petunia root microbiota networks (Table S5). While all Arabidopsis keystone OTUs 437 

belonged to the high-P module ‘M27’, we found keystone OTUs in the low-P 438 

responsive module ‘M26’ of Petunia. These low-P responsive keystone OTUs were the 439 

Glomeromycotina fOTU6 and fOTU111 as well as fOTU109 of unknown taxonomy.  440 
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ENDOBACTERIA 441 

To understand whether bacterial communities associated with the Arabidopsis 442 

or Petunia root microbiota could include fungal endobacteria, we aligned candidate 443 

bOTU sequences to a database of curated endobacteria sequences (see methods). 444 

Phylogenetic placement confirmed bOTU134 as Candidatus Glomeribacter closely 445 

related to one hosted in Scutellospora pellucida (Figs. 7a, S6, S7). In addition, we 446 

identified two bOTUs (330 and 778) mapping to Mycoplasma-related endobacteria 447 

identified in the AMF species Claroideoglomus claroideum and C. etunicatum, 448 

respectively. Although these two bOTUs do not belong to the ‘AMF module M26’ of 449 

Petunia, they were, similar to bOTU134, significantly higher in abundance under low-450 

P conditions (Table S3). Phylogenetic placement analysis revealed six additional 451 

Burkholderia- and two Mycoplasma-related endobacteria OTUs (Figs. 7, S6), however 452 

as they were detected with only a handful of reads in a few samples, we did not include 453 

them for network analysis (see Notes S4 for details). The use of microbiota network 454 

characteristics was generally not indicative for identifying endobacteria OTUs, by 455 

contrast the clustering-based approach proved to function well (Figs. S6, S7, Notes S4). 456 

In summary, the combined sequencing of bacteria and fungi permitted to identify three 457 

endobacteria OTUs that had a consistent abundance behavior with their mycorrhizal 458 

hosts along the P-gradient.   459 
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DISCUSSION 460 

In this study, we revealed the dynamics of the root microbiota of non-461 

mycorrhizal Arabidopsis and mycorrhizal Petunia plants along a gradient of plant-462 

available P in soil. We demonstrate that the composition of the root microbiota alters 463 

depending on P availability and we revealed species-specific microbial patterns in 464 

response to low-P conditions. Under low-P conditions, we confirmed a substantial 465 

colonization by AMF in Petunia together with numerous bacteria of the Burkholderiales 466 

and Rhodocyclales, whereas Arabidopsis roots hosted mainly Mortierellomycotina 467 

fungi and abundant bacteria from the Burkholderiales, Bdellovibrionales and 468 

Rhodocyclales. However, the root microbiota of the two plants contained different 469 

members (bOTUs) of these taxonomic lineages. These groups of P-sensitive microbes 470 

responded simultaneously to the different levels of P availability. Among these co-471 

occurring microbes, we found fungal endobacteria and their corresponding hosts, 472 

presenting a well-known example of highly specific multitrophic microbial 473 

interactions. 474 

ENDOBACTERIA 475 

To our knowledge, this is the first report to identify endobacteria of 476 

Mucoromycotina in a plant microbiota study. Above all, the experimental design with 477 

low- to high-P conditions was instrumental to become aware of fungal endobacteria in 478 

the dataset. A first hint for the presence of endobacteria came from the statistical 479 

approach to find differentially abundant bOTUs between low and high-P conditions, 480 

revealing the enrichment of a Candidatus Glomeribacter OTU under low-P conditions 481 

(Fig. 5b). Of note, bOTU134 was almost overlooked, as a reliable taxonomy 482 

assignment (confidence >0.7) was only available down to family level, while the deeper 483 

data exploration indicated a link with endobacteria (genus-level assignment was 484 

‘Candidatus Glomeribacter’, confidence 0.34). The second hint that pointed to 485 

endobacteria and their hosts were the co-abundance patterns, which grouped bOTUs 486 

including Candidatus Glomeribacter bOTU134 with numerous Glomeromycotina 487 

fOTUs (Table S5). Here again, experimental design was instrumental because the co-488 

occurrence analysis groups microbes with similar abundances in samples from low- to 489 

high-P conditions. Finally, we relied on phylogenetic placement to confirm that 490 

bOTU134 represents a Candidatus Glomeribacter, which is phylogenetically related to 491 

a previously isolated exemplar from the AMF species Scutellospora pellucida (Fig. 7). 492 
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The identification of bOTU134 as a fungal endobacterium prompted us to 493 

search for additional potential endobacteria in the Arabidopsis or Petunia root 494 

microbiota. We compared two strategies, co-occurrence characteristics and sequence 495 

similarity to known endobacteria, for their usefulness to identify endobacteria from root 496 

microbiota data. For the co-occurrence characteristics strategy, we selected all bOTUs 497 

that significantly co-occurred with fOTUs from lineages known to host endobacteria, 498 

and then placed the resulting 129 candidate bOTUs into the endobacteria reference tree. 499 

For the second strategy, we clustered all sequences of the curated endobacteria database 500 

with all representative bOTU sequences of the microbiota dataset, and then placed the 501 

resulting 22 candidate bOTUs with the highest sequence similarity into the 502 

endobacteria reference tree. Overall, in addition to bOTU134, two abundant (bOTUs 503 

330 and 778) and 8 low-abundant endobacteria OTUs were identified (Notes S4). 504 

Moreover, the relative abundance of the three OTUs along the P-gradient was 505 

consistent with the one of their fungal hosts (Table S4). While both approaches 506 

identified bOTUs 134 and 778, the clustering-based approach functioned more 507 

efficiently as also low abundant candidates were identified.  508 

There are probably multiple reasons why endobacteria and their hosts were 509 

largely neglected in microbiota studies so far. Reasons include the low taxonomic 510 

resolution of short-read community data or the underrepresentation of reference 511 

endobacteria sequences in commonly used taxonomy databases. Here, only the 512 

combined sequencing of bacteria and fungi together with the dedicated experimental 513 

design to manipulate the abundance pattern of fungal hosts and the curated endobacteria 514 

database permitted to identify endobacteria OTUs. Our study demonstrates that 515 

microbiota and/or metagenomic datasets represent useful tools to investigate 516 

endobacterial–fungal interactions in their true ecological context. Possibly, such 517 

cultivation-independent methods can point to further endobacterial–fungal 518 

partnerships. Since endobacteria are ecologically relevant for the fitness of their (plant-519 

associated) fungal hosts  (Salvioli et al., 2016; Uehling et al., 2017; Desirò et al., 2018), 520 

they may also relay some benefits or detriments to the host plant of the fungus 521 

(Bonfante & Desirò, 2017). Hence, mycorrhizal plants, their colonizing fungi along 522 

with their endobacteria form an entity of a multi-kingdom symbiosis. As put forward 523 

by the holobiont concept (Vandenkoornhuyse et al., 2015), the importance of multi-524 

kingdom microbe-microbe interactions for plant performance is not only true for 525 

endobacteria and their fungal hosts but also in general between root bacteria and root 526 
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fungi. For instance, root bacteria are essential to protect plants against pathogenic root 527 

fungi (Durán et al., 2018). 528 

QUANTIFYING AMF IN PLANT ROOTS 529 

Although specific sequencing methods to quantify AMF in plant roots (Öpik et 530 

al., 2009; Schlaeppi et al., 2016) are available, we sought to establish a sequencing-531 

based approach to assess AMF in plant roots in the context of the whole fungal 532 

diversity. In the search for a PCR approach that avoided amplification of plant ITS 533 

sequences, we also wanted that AMF would be well captured in plant roots unlike other 534 

plant root-fungi profiling methods (Ihrmark et al., 2012b; Hartman et al., 2018). The 535 

Illumina approach by McGuire et al. (2013b), although reporting soil fungal profiles, 536 

indicated that PCR primers ITS1F and ITS2 would permit to abundantly capture AMF 537 

and this approach turned out to be successful on plant roots, too (Fig. S2).  538 

Prior to community sequencing, we had evaluated the effectiveness of our 539 

experimental P availability gradient by confirming that AMF abundantly colonize 540 

Petunia roots under low-P but not under high-P conditions (Fig. 1c). We performed this 541 

quality control using the traditional ‘magnified intersection’ (McGonigle et al., 1990) 542 

microscopy method on equivalent subsamples as the ones that were used for the 543 

sequencing. The microscopy method relies on staining cleared roots, interpreting and 544 

enumerating the different fungal structures following a defined counting scheme under 545 

the microscope. Compared to the sequencing-based quantification of AMF in plant 546 

roots, the microscopy method appears disadvantageous as it is prone to operator-to-547 

operator variation, is time consuming and lacks throughput, discrimination between 548 

AMF species as well as the context of the whole fungal diversity. Nevertheless, we 549 

found a reliable agreement between the two methods with a significant positive 550 

correlation (Fig. 3b). In summary, the MiSeq-based community profiling approach 551 

with the PCR primers ITS1F and ITS2 avoided amplification of plant ITS sequences, 552 

abundantly displayed the AMF and independently reproduces AMF colonization 553 

patterns of plant roots.  554 

AMF AS KEYSTONE SPECIES  555 

Keystone taxa are thought to own central positions in microbial networks, with 556 

many links to other species; therefore, they may play important ecological roles by 557 

determining community dynamics and microbiome functioning (Banerjee et al., 2018). 558 

AMF were postulated to be keystone species (van der Heijden & Hartmann, 2016) and 559 
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indeed, we find two Glomeromycotina OTUs (fOTU6 and fOTU111) as being 560 

keystones in the low-P responsive Petunia module ‘M26’ (Fig. 6). Technically, the two 561 

Glomeromycotina OTUs fulfilled the network-based criteria defining keystone OTUs 562 

– keystone OTUs have high degree of co-occurrence, high closeness centrality and low 563 

betweenness centrality (Banerjee et al., 2018). The two identified keystone OTUs have 564 

high degrees of co-occurrence implying they are co-abundant with many other (mostly 565 

Glomeromycotina) OTUs in the network. However, with regard to these network-566 

topology based criteria, there is a major caveat linked to Glomeromycotina fungi: 567 

several Glomeromycotina species have particularly high intraspecies genetic diversity 568 

at the rRNA operon (Stockinger et al., 2010; Lekberg et al., 2014) and, as a 569 

consequence, these fungi require multiple OTUs (at >97% sequence identity) to 570 

represent a single species. For example, three OTUs described the AMF Rhizoglomus 571 

irregulare (Schlaeppi et al., 2016). Therefore, multiple OTUs per fungal species 572 

artificially inflate the number of co-occurring OTUs for an AMF species (the 3 OTUs 573 

of R. irregulare will consistently co-occur with each other). While we agree that AMF 574 

fulfil a key role in root microbiome functioning and this is especially true under low-P 575 

conditions, we anticipate that the mathematical criteria for identifying AMF keystones 576 

from network data may need to be improved and validated using functional analyses. 577 

Instead of assigning keystone status to some pseudo-replicated sequence groups (e.g., 578 

the 3 OTUs for R. irregulare) based on network topology, we rather favor the idea of 579 

empirically nominate keystone microbes because of their known key function(s) in a 580 

given condition (e.g., low-P availability). 581 

OLPIDIUM BRASSICAE 582 

The root microbiota of Arabidopsis but not Petunia, whether profiled with 583 

MiSeq or SMRT-sequencing, comprised abundant sequences assigned to O. brassicae, 584 

which is a common root-infecting fungal pathogen of Brassicaceae plants (Lay et al., 585 

2018). As biotrophic fungus, O. brassicae does not cause tissue maceration. Although 586 

the Arabidopsis roots were without signs of disease when harvested, we learned after 587 

the community sequencing that the fungus had spread in the root tissue. Nevertheless, 588 

such dominance of O. brassicae OTUs was observed in previous studies (Tkacz et al., 589 

2015; Durán et al., 2018; Lay et al., 2018). Similar to our study, Lay et al. (2018) 590 

examining canola, wheat and pea roots, also found a Brassicaceae-specific enrichment 591 

of an O. brassicae OTU. Because these findings originate from different Brassicaceae 592 
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species and different soil types, we consider the dominance of O. brassicae in 593 

Arabidopsis roots in our study rather a true biological observation than a technical 594 

artifact. Although, we confirmed this observation with SMRT sequencing, we cannot 595 

fully exclude that the frequent amplification of O. brassicae OTUs may be linked to 596 

the PCR primer ITS1f, as all these studies target the ITS1 region and have the use of 597 

ITS1 or ITS1f PCR primers in common. 598 

P-SENSITIVE MICROBIOTA 599 

We found species-specific microbial patterns in response to low-P conditions 600 

consisting of abundant Mortierellomycotina and Glomeromycotina fungi in 601 

Arabidopsis and Petunia, respectively (Fig. 5, Table S4). Similar to the functioning of 602 

AMF in plant P provision, there are some reports that Mortierella spp. support P 603 

nutrition of plants (Alori et al., 2017). Although represented by different sequence 604 

groups, bacteria of the Burkholderiales and Rhodocyclales were abundant in both 605 

species. Bacteria of both orders, including members that attach to AMF hyphae, are 606 

well known for their ability to solubilize and mobilize P (Sharma et al., 2013; Taktek 607 

et al., 2015; Alori et al., 2017). Candidatus Accumulibacter being abundant in Petunia 608 

under low-P conditions (bOTU13, Fig. 5b) as well as the Dechloromonas sp. (bOTU2, 609 

enriched in low-P, both plant species) are both intriguing root bacteria, as they are 610 

capable of polyphosphate metabolism, which has been implicated in stress response to 611 

low nutrients in the environment (Rao & Kornberg, 1996; Flowers et al., 2013). In 612 

summary, it appears that non-mycorrhizal Arabidopsis and mycorrhizal Petunia rely on 613 

different microbial associations to cope with low-P conditions.  614 

We revealed species-specific and in contrast to Robbins et al. (2018), we found 615 

marked root microbiota dynamics of the two plants along a gradient of plant-available. 616 

A plausible reason for stronger P effects on the root microbiota is that our approach 617 

created stronger P limiting conditions (1.05 mg P kg-1 soil) compared to the low-P 618 

control soil (P1, did not receive phosphate amendments over the last 65 years) of the 619 

long-term P fertilization experiment studied by Robbins et al. (2.3 mg P kg-1 soil, values 620 

are directly comparable as they were analyzed in the same professional soil laboratory 621 

with the same method). Moreover, we established a steeper gradient between low and 622 

high-P conditions with a P availability of ~113 mg P kg-1 soil as high-P condition 623 

compared to ~12 mg P kg-1 by Robbins et al. (2018). The stronger P limiting conditions 624 

in our study were also reflected in the different rosette biomass data in both studies as 625 
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we find a twofold reduction in median rosette biomass whereas they measured at 626 

maximum a 1.5x effect in low-P soils.  627 

CONCLUDING REMARKS 628 

The analysis of root microbiota dynamics of Arabidopsis and Petunia to low-P 629 

conditions revealed a number of plant-species specific root microbes that are 630 

preferentially selected at low soil P availability. With regard to agricultural 631 

applications, this works suggests that for supporting different plant species in P 632 

nutrition, different P-solubilizing and/or mineralizing bacteria strains are needed. 633 

Possibly this explains the high context dependency of successful field applications with 634 

P-solubilizing and/or mineralizing bacterial products.   635 
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 1 
 2 
Figure 1 | Effectiveness of manipulated phosphate levels on plant growth, leaf nutrient 3 
levels and levels of AMF root colonization 4 
Arabidopsis (reddish colors, see legend) and Petunia (blueish colors) were grown at low (L), 5 
medium (M) and high (H, increasing hue) levels of P availability and basic plant parameters 6 
were recorded to confirm that the experimental setup. Parameters included (a) above-ground 7 
plant biomass, (b) leaf phosphorus levels, (c) Petunia root colonization by arbuscular 8 
mycorrhizal fungi (AMF) and (d) leaf potassium levels. A linear model was used to test for 9 
effects of P availability for panels (a) (log-transformed data), (b) and (d) and a quasibinomial 10 
generalized linear model for panel (c). Different letters indicate significant pairwise 11 
differences among sample groups (P < 0.05, Tukey HSD).   12 
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 13 
 14 
Figure 2 | Taxonomic profiles of microbial communities at phylum level 15 
(a) Bacteria profiles were obtained using MiSeq sequencing while fungal profiles were 16 
determined using (b) MiSeq and (c) SMRT sequencing. Phyla with relative abundances lower 17 
than 1% were summarized with ‘other’. Levels of P-availability are indicated with low (L), 18 
medium (med.; M) or high (H).  19 
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 20 
 21 
Figure 3 | Abundance of AMF in Petunia roots 22 
(a) Quantification of AMF based on the relative abundance of Glomeromycotina sequences in 23 
the microbiota profiles. Relative abundances were calculated from total sum normalized data. 24 
A quasibinomial generalized linear model was used to test for effects due to P availability. 25 
Different letters indicate significant pairwise differences between sample groups (P < 0.05, 26 
Tukey HSD). This data was correlated (b) with the levels of AMF root colonization as measured 27 
in the same samples by microscopy (data presented in Fig. 1c).   28 
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 29 
 30 
Figure 4 | Effects of plant species and P-levels on community composition 31 
Unconstrained ordinations with PCoA using Bray-Curtis dissimilarities were performed on the 32 
(a) bacterial and (b) fungal communities associated with roots. Samples were colored 33 
following the color scheme defined in Fig. 1 (Arabidopsis and Petunia with reddish and blueish 34 
colors, respectively, and the increasing P availability (low, medium to high) are marked with 35 
increasing hue.  36 
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 37 
 38 
Figure 5 | Identifying phosphate sensitive microbes  39 
P sensitive OTUs (differentially abundant between low and high P conditions) were separately 40 
identified for the bacteria and fungi, both in Arabidopsis and Petunia (edgeR analysis, high vs 41 
low P, FDR < 0.05). (a) The ternary plots depict individual OTUs (in circles), sized by their 42 
relative abundance, and the position of the OTUs in the triangle reflects their proportional 43 
abundance in low, medium and high P samples. P sensitive OTUs are colored in red 44 
(Arabidopsis), blue (Petunia) or purple (found in both species) and non-affected OTUs are 45 
colored in gray. The number of P sensitive OTUs and their overlap between species is given 46 
with the venn diagrams. Panels b and c illustrate the relative abundances (per milles) of a few 47 
representative P sensitive bacterial and fungal OTUs in low (L), medium (M) and high (H) P 48 
conditions (They are also indicated in the ternary plots).  49 
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 6 

 50 
 51 
Figure 6 | Microbial co-occurrence patterns along the gradient of plant-available phosphate 52 
(a) Co-occurrence networks visualize the significant positive pairwise correlations (ρ > 0.7, P < 53 
0.001; indicated by links between OTUs) between bacteria (circles) and fungi (triangles) OTUs 54 
in Arabidopsis and Petunia root communities. P sensitive OTUs, which are abundant under 55 
low and high P conditions, are colored in yellow and blue, respectively. The twenty network 56 
modules comprising highest numbers of OTUs are rimmed with grey lines with the modules 57 
containing high proportions of P-responsive OTUs being shaded in yellow and blue. (b) Top 58 
twenty most populated modules, ranked by decreasing numbers of OTUs (bOTUs in circles; 59 
fOTUs as triangles) with low and high P sensitive OTUs being colored in yellow and blue, 60 
respectively. Percentages below the x-axis report the proportion of P sensitive OTUs present 61 
in each module. (c) Cumulative relative abundance (as permilles) of all bacteria and fungi OTUs 62 
in the P sensitive modules in low (L), medium (M) and high (H) P conditions. The cumulative 63 
relative abundance indicates the overall response of the microbes in the P sensitive modules. 64 
(d) Number and overlap of OTUs in the low P sensitive modules of Arabidopsis and Petunia 65 
are shown with the venn diagram.  66 
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 67 
 68 
Figure 7 | Phylogenetic placement of endobacteria OTUs from candidates identified by the 69 
clustering approach 70 
Simplified trees summarizing the confirmed Burkholderia-related endobacteria (BRE, a) and 71 
Mollicutes-related endobacteria (MRE, b); the detailed tree is available as Fig. S6. (a) Four 72 
candidate BRE OTUs cluster within two clades encompassing BRE sequences from 73 
Mortierellomycotina fungi. In detail, bOTU 1995 is sister to the type strain of Mycoavidus 74 
cysteinexigens, whereas bOTUs 1020, 1046 and 1682 cluster with an undescribed BRE hosted 75 
in Mortierella elongata. Two bOTUs (134 and 2298) cluster within two clades encompassing 76 
Candidatus Glomeribacter gigasporarum (CaGg) sequences retrieved from Scutellospora 77 
pellucida (Glomeromycotina). Two bOTUs (33 and 390) cluster within a new BRE clade, 78 
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together with putative environmental BRE sequences. (b) Four candidate MRE OTUs cluster 79 
within different clades encompassing Candidatus Moeniiplasma glomeromycotorum (CaMg) 80 
sequences from Glomeromycotina fungi. In detail, bOTUs 330 and 778 cluster with CaMg 81 
hosted in several strains of Claroideoglomus spp., whereas bOTUs 1797 and 3291 cluster with 82 
CaMg hosted in several strains of Gigaspora margarita and Scutellospora pellucida. The trees 83 
show the topology obtained with the Bayesian method. Branches with Bayesian posterior 84 
probabilities (BPP) ≥0.95 and ML bootstrap support values ≥70 are thickened; asterisks (*) 85 
indicate branches with BPP ≥0.95 but ML bootstrap support values <70; ML bootstrap support 86 
values ≥70 are shown for branches having BPP <0.95. Sequences generated in this study are 87 
in bold. 88 
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