The coat color phenotype of rabbits is controlled by a gene called
Agouti. The wild-type A
allele is dominant
and causes hairs to be black pigmented. We have 60 agouti and and 51
non-agouti individuals (phenotypes) in a local rabbit population.
How many % of the individuals are homozygote for the agouti gene?
We know how many rabbits we have in total (n=111) and we know how many are non-Agouti (\(n(aa)=51\)). So first we calculate the frequency of the non-Agouti rabbits:
Now we can calculate the allele frequency of the a
allele.
Next we calculate the allele frequency for dominat A
allele.
Now, we have everything we need to calculate the frequency of the
homozygote Agouti rabbits f(AA)
in this population.
Observed number of genotypes
Summary:
AA | Aa | aa | Total | |
---|---|---|---|---|
\(N_{obs}\) | 1469 | 138 | 5 | 1612 |
\(N_{exp}\) | 1467.11 | 141.19 | 3.4 | 1611.7 |
⇒ At this loci, the observed population of Scarlet Tiger Moth appears to be at HW.
Genotypes | AA | AB | AC | BB | BC | CC | Sum |
---|---|---|---|---|---|---|---|
Counts | 17 | 86 | 5 | 61 | 9 | 0 | 178 |
Frequencies | 0.096 | 0.483 | 0.028 | 0.343 | 0.051 | 0 | 1.000 |
Calculate allele frequencies.
\(f(A) = f(AA)+\frac{f(AB)}{2}+\frac{f(AC)}{2} = 0.0955056+\frac{0.4831461}{2}+\frac{0.0280899}{2} = 0.351\)
\(f(B) = f(BB)+\frac{f(AB)}{2}+\frac{f(BC)}{2} = 0.3426966+\frac{0.4831461}{2}+\frac{0.0505618}{2} = 0.61\)
\(f(C) = f(CC)+\frac{f(AC)}{2}+\frac{f(BC)}{2} = 0+\frac{0.0280899}{2}+\frac{0.0505618}{2} = 0.039\)
abc.data <- c(rep("A/A", 17),
rep("A/B", 86),
rep("A/C", 5),
rep("B/B", 61),
rep("B/C", 9),
rep("C/C", 0))
# Create a genotype object
g3 <- genetics::genotype(abc.data)
# Chi-Square Test
genetics::HWE.chisq(g3, B = 10000) # B: Number of simulations, default: 10'000
##
## Pearson's Chi-squared test with simulated p-value (based on 10000
## replicates)
##
## data: tab
## X-squared = 3.0775, df = NA, p-value = 0.5371
source("https://www.gdc-docs.ethz.ch/UniBS/EvolutionaryGenetics/PopGen/script/hw3.R")
hw3(AA = nAA, AB = nAB, AC = nAC, BB = nBB, BC = nBC, CC = nCC)
## obs_N obs_f(GT) ex_f(GT) exp_N D
## AA 17 0.09550562 0.123287779 21.9452247 1.114376719
## BB 61 0.34269663 0.371551887 66.1362360 0.398887530
## CC 0 0.00000000 0.001546522 0.2752809 0.275280899
## AB 86 0.48314607 0.428055170 76.1938202 1.262059856
## AC 5 0.02808989 0.027616463 4.9157303 0.001444623
## BC 9 0.05056180 0.047942179 8.5337079 0.025478767
## [1] freq(A) = 0.35112
## [1] freq(B) = 0.60955
## [1] freq(C) = 0.03933
## [1] X^2 = 3.07753
## [1] p-value = 0.37983
## [1] "=> Population is in H-W at this locus"
Genotype | Obs | |
---|---|---|
1 | 100/100 | 4 |
2 | 100/81 | 6 |
3 | 81/81 | 14 |
4 | 100/66 | 4 |
5 | 81/66 | 7 |
6 | 66/66 | 3 |
Total | 38 |
Is the sampled population in Hardy-Weinberg proportions at the ACY1 locus?
Allele frequencies:
Fragment length 100 nt: \(\hat{p}=0.237\)
Fragment length 81 nt: \(\hat{q}=0.539\)
Fragment length 66 nt: \(\hat{r}=0.224\)
Expected number of genotype:
Genotype | Obs | Exp | |
---|---|---|---|
1 | 100/100 | 4 | 2.1315789 |
2 | 100/81 | 6 | 9.7105263 |
3 | 100/66 | 4 | 4.0263158 |
4 | 81/81 | 14 | 11.0592105 |
5 | 81/66 | 7 | 9.1710526 |
6 | 66/66 | 3 | 1.9013158 |
\(\chi^2 test:\)
\(\chi^2=\sum{\frac{(obs-exp)^2}{exp}} \rightarrow \chi^2=4.9865923 \rightarrow p-value=0.1727816\) (n.s.)
⇒ At locus ACY1, the observed population of Brown Hare appears to be at HW.
We have SNP-based genotyping for three different loci (position).
L145 | L785 | L886 | Count |
---|---|---|---|
GC | CC | AG | 1 |
GG | CT | GA | 2 |
GG | TT | AA | 9 |
CC | CC | AA | 1 |
CG | CC | GG | 3 |
CG | CT | GA | 27 |
CC | CC | GG | 12 |
CC | CC | AA | 1 |
Number of Genotypes
Locus 145: \(n(GG) = 11\); \(n(GC) + n(CG) = 31\); \(n(GG) = 14\)
Locus 785: \(n(CC) = 18\); \(n(CT) + n(TC) = 29\); \(n(TT) = 9\)
Locus 886: \(n(AA) = 11\); \(n(AG) + n(GA) = 30\); \(n(GG) = 15\)
(a1) Genotype frequency
Locus 145: \(f(GG)=0.196\); \(f(GC)=0.554\); \(f(CC)=0.25\)
Locus 785: \(f(CC)=0.321\); \(f(CT)=0.518\); \(f(TT)=0.161\)
Locus 886: \(f(AA)=0.196\); \(f(AG)=0.536\); \(f(GG)=0.268\)
(a2) Allele frequency
Locus 145: \(f(G)=0.473\); \(f(C)=0.527\)
Locus 785: \(f(C)=0.58\); \(f(T)=0.42\)
Locus 886: \(f(A)=0.464\); \(f(G)=0.536\)
(b + c) HW and Ternary Plots
Locus 145
## Chi-square test for Hardy-Weinberg equilibrium (autosomal)
## Chi2 = 0.6816642 DF = 1 p-value = 0.4090143 D = 1.540179 f = -0.1103294
Locus 785
## Chi-square test for Hardy-Weinberg equilibrium (autosomal)
## Chi2 = 0.2235014 DF = 1 p-value = 0.6363849 D = 0.8616071 f = -0.06317512
Locus 886
## Chi-square test for Hardy-Weinberg equilibrium (autosomal)
## Chi2 = 0.3313609 DF = 1 p-value = 0.5648588 D = 1.071429 f = -0.07692308