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A Primer of Ecological Genetics 
Chapter 2 - Hardy-Weinberg - Page 25-36
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‣ Random Mating 

‣ No Mutation 

‣ Large Population Size ➜ No/Low Genetic Drift 

‣ No Natural Selection 

‣ No Immigration

Simple model of population genetics:
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Phenotype dark dark light

Genotype

Homozygote Heterozygote Homozygote

AA Aa aa

AA AB BB

A1A1 A1A2 A2A2
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A1 A2

A2 A1A2 A2A2

A2 A1A2 A2A2
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Punnett square

A1A2 × A2A2 → 50% A1A2 and 50% A2A2
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x11 = 6
20 = 0.3≅ PNA1A1

= 6

NA2A2
= 2

NA1A2
= 12

x22 = 2
20 = 0.1 ≅ Q

x12 = 12
20 = 0.6 ≅ H

NTotal = 20 x11 + x22 + x12 = 1.0
P +Q + H = 1.0

Genotype Frequency
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A1A2

A1A2

A1A2

A1A2

A1A2

A1A2

A1A2

A1A1

A1A1 A1A1

A1A1
A1A1

A2A2

A2A2

A1A2

A1A2

A1A2

A1A2

A1A2
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NA1
= 24

NA2
= 16

NTotal = 40

f (A1) = 24
40 = 0.6 = p

f (A2 ) = 16
40 = 0.4 = q

f (A1) + f (A2 ) = 1.0
p + q = 1.0

A1A2

A1A2

A1A2

A1A2

A1A2

A1A2

A1A2

A1A1

A1A1 A1A1

A1A1
A1A1

A2A2

A2A2

A1A2

A1A2

A1A2

A1A2

A1A2

A1A1
Allele Frequency
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The Hardy-Weinberg law describes the equilibrium state of a single locus in a randomly mating diploid 
population that is free of other evolutionary forces, such as mutation, migration, and genetic drift.
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A2A2
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A2

A2

A2
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A2

A2

A2

A2

A2

A1 = 24⇒ f (A1) = p = 24
40 = 0.6

= 16⇒ f (A2 ) = q = 16
40 = 0.4

A1 A1

A2 A2

A1 A2

= p2 = 0.36

= q2 = 0.16

= pq = 0.24
A1A2 = qp = 0.24 } = 2pq = 0.48

p2 + 2pq + q2 = 0.36 + 0.48 + 0.16 = 1
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Gene Pool
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freq(A1) = p = (2N11 + N12 )
2N

freq(A2 ) = q =
(2N22 + N12 )

2N

p + q = 1

freq(A1A1) =
N11
N

= p2 ≅ P

freq(A1A2 ) =
N12
N

= 2pq ≅ H

freq(A2A2 ) =
N22

N
= q2 ≅Q

p2 + 2pq + q2 = (p + q)2 = 1

Genotype frequencies Allele frequencies
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A1A1 A1A2 A2A2

p2 2pq q2 q2+2pq+q2

p=0.10 0.010 0.180 0.810 1.000

p=0.25 0.063 0.375 0.563 1.000

p=q=0.5 0.250 0.500 0.250 1.000

p=0.75 0.563 0.375 0.063 1.000

p=0.90 0.810 0.180 0.010 1.000
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p = q = 0.5

13

Heterozygote: 50%

Homozygote: 2x25%
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Rare Alleles

14
Allele frequencies
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One of the consequences of the Hardy-Weinberg law 
concerns the genotype occupied by rare alleles. 

A2

A1

A1

A1
A1

A1

A1

A1

A1A1

A1

A1

A1

A1

A1

A1

A1 A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

A2

A1

A1A1

A1
A1

A1

A1

A1
A1

A1

A1

A1

A1

= 39⇒ f (A1) = p = 0.975

= 1⇒ f (A2 ) = q = 0.025

A1 A1

A2 A2

A1 A2

= p2 = 0.95

= q2 = 0.000625

A1A2
} = 2qp = 0.04875
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2.5%

5%
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Rare alleles are especially susceptible to loss during a 
bottleneck. However, the loss of rare alleles will have 
little effect on the persistence of heterozygosity.
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= 2pq
p2 = 2q
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p≈1 2q
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Founder events are known to decrease the genetic diversity of the 
population, and are often followed by a demographic expansion. It has been 
shown, both theoretically, and empirically, that allelic richness is more 
sensitive than heterozygosity to founder events followed by expansions, 
since allelic richness does not consider abundances of the alleles but only their 
presence (a rare allele that is lost in a founder event will probably not affect 
heterozygosity much, but the loss does reduce allelic richness). Moreover, 
allelic richness is more indicative of the evolutionary potential of the 
population in the long-run in these scenarios, as the existence of alleles, 
rather than their frequencies, holds a significant part of potential for response 
to selection, as selection limits are determined by the initial allelic 
composition rather than by levels of heterozygosity. 
                                                                                  Source: Greenbaum et al. (2015) PLoS ONE
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A1A2

A3A4

A5A6

A7A8

A1A2

A1A2

A1A2

A1A2

n(alleles) = 8
f (H ) = 1

n(alleles) = 2
f (H ) = 1
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A1A2

A3A4

A5A6

A7A8

n(alleles) = 8
f (H ) = 1

A3A4

n(alleles) = 2
f (H ) = 1

Founder event
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n(alleles) = 2
f (H ) = 1

A1A2

A1A2

A1A2

A1A2

n(alleles) = 2
f (H ) = 1

A1A2Founder event
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‣ diploid individuals 

‣ reproduces by sexual means 

‣ mating at random 

‣ population is infinite 

‣ no mutation 

‣ no (natural) selection 

‣ no genetic exchange with other populations

The Hardy-Weinberg theorem only works if the 
following assumptions for the population are met:
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?

22

Is the observed heterozygosity frequency 
significantly different from the expected 

heterozygosity frequency under HW?

Pearson's chi-squared test can be used to determine whether there is a 
statistically significant difference between the expected frequencies and the 
observed frequencies in one or more categories of a contingency table.

A2A2 A1A1A1A2

Expected: p = 0.9; q = 0.1 → Hexp = 2pq = 0.18

Observerd: p = 0.9; q = 0.1 → Hobs = 0.5
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χ2 = ∑
(observed − expected)2

expected

The chi-square statistic is a mathematical tool used in statistics to assess the 
independence or association between categorical variables. It measures the extent 
to which observed data differ from what would be expected if the variables were 
independent. It is often used in hypothesis testing, where researchers compare 
observed data with expected data to determine if there is a significant relationship 
between variables.

The formula for the chi-square statistic involves summing the squared differences 
between the observed and expected frequencies, which are then standardised and 
compared to a chi-squared distribution to determine statistical significance. If the 
calculated chi-square value is sufficiently different from what would be expected by 
chance, it suggests a significant relationship between the variables.
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100

125

50-

100-
200-
300-

A1A1 A1A2 A2A2

100/100 100/125 125/125 total

5 12 6 23

Observed:

A1A1

Genotype

fragment size

A1A2 A2A2
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freq(A1) = pf freq(A2) = qf

freq(A1) = pm freq(A1A1) = pf x pm freq(A2A1) = qf x pm

freq(A2) = qm freq(A1A2) = pf x qm freq(A2A2) = qf x qm

Punnett square

freq(A1A1) = pf ⋅ pm
pm=pf p2

freq(A1A2) = 2(pf ⋅ pm) pm=pf

qm=qf

2pq

freq(A2A2) = qf ⋅ qm
qm=qf

q2

p2 + 2pq + q2 = (p + q)2 = 1
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50-

100-
200-
300-

Observed:

A1A1 A1A2 A2A2

100/100 100/125 125/125 total

5 12 6 23

A1A1

Genotype

A1A2 A2A2
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100

125

fragment size
̂p =

2NA1A1
+ NA1A2

2Ntotal
= 10 + 12

46 = 0.478

̂q =
2NA2A2

+ NA1A2

2Ntotal
= 12 + 12

46 = 0.522
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100/100 100/125 125/125 total

5.3 11.5 6.3 23.1

Expected:

Observed:

A1A1 A1A2 A2A2

100/100 100/125 125/125 total

5 12 6 23
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50-

100-
200-
300-

A1A1

Genotype

A1A2 A2A2

100

125

fragment size

NA1A1
= ̂p2Ntotal = 0.4782 ⋅ 23 = 5.3

NA1A2
= 2 ̂p ̂qNtotal = 2 ⋅ 0.478 ⋅ 0.522 ⋅ 23 = 11.5

NA2A2
= ̂q2Ntotal = 0.5522 ⋅ 23 = 6.3

̂p =
2NA1A1

+ NA1A2

2Ntotal
= 10 + 12

46 = 0.478

̂q =
2NA2A2

+ NA1A2

2Ntotal
= 12 + 12

46 = 0.522
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Observed:

A1A1 A1A2 A2A2

100/100 100/125 125/125 total

5 12 6 23

100/100 100/125 125/125 total

5.3 11.5 6.3 23.1

Expected:

The chi-square method provides a 
statistical test to determine whether 
the deviation between the observed 
genotypic and expected Hardy-
Weinberg proportions is greater than 
we would expect by chance alone.

28

χ2 = ∑
(observed − expected)2

expected
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χ 2 = (5 − 5.3)2

5.3
+ (12 −11.5)2

11.5
+ (6 − 6.3)2

6.3
= 0.05 ⇒  p > 0.05

Observed:

A1A1 A1A2 A2A2

100/100 100/125 125/125 total

5 12 6 23

100/100 100/125 125/125 total

5.3 11.5 6.3 23.1

Expected:

29
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DF for 2 alleles: 1
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χ 2 = (5 − 5.3)2

5.3
+ (12 −11.5)2

11.5
+ (6 − 6.3)2

6.3
= 0.05 ⇒  p > 0.05

Observed:

A1A1 A1A2 A2A2

100/100 100/125 125/125 total

5 12 6 23

100/100 100/125 125/125 total

5.3 11.5 6.3 23.1

Expected:

H0 (null hypothesis): The population is in Hardy-Weinberg proportions at this locus.

31

1-pchisq(0.05, 1) = 0.82 > 0.05



PopGen ▷ Hardy-Weinberg Principle 

UniBS | EvoGen | JCW 

# Genotype Counts
x <- c(AA = 5, AB = 12, BB = 6)
# HW-Test
HWres <- HardyWeinberg::HWChisq(x, c = 0, verbose = TRUE)

##  : value of the chi-square statistic
> HWres$chisq
# [1] 0.04752066 ( )

## p-value of the chi-square test for HWE 
> HWres$pval
# [1] 0.8274351 (p-value)

## Half the deviation from HWE for the AB genotype
> HWres$D
# [1] 0.2608696 (D)

χ2

χ2

32

 1-pchisq(0.05, 1)⟵
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Alternatively, the chi-square statistic may be expressed as 

33

where 

from independence for the heterozygote.

χ2 = D2

p2q2n

D = 1
2 (observedAB − expectedAB) indicates the deviation
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50-

100-
200-
300-

AA BB CC
Genotype

AC BC AB

p = frequency(A)
q = frequency(B)
r = frequency(C)

(p + q + r)2 = p2 + 2pq + q2 + 2pr + 2qr + r2

Example with 3 Alleles

34

The generalisation of the Hardy-Weinberg law to multiple alleles 
requires no new ideas.
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The      test can be extended from 2-alleles to multiple alleles. 

χ 2 = obs−exp( )2
exp

i=1

k

∑

χ 2

χ 2 = N11−p
2N( )2

p2N + N12−2 pqN( )2
2 pqN + N22−q

2N( )2
q2N

χ 2 = Nii−pi
2N( )2

pi
2N

i
∑ + Nii−2 pi p jN( )2

2 pi p jN
i< j
∑

2 alleles

n alleles

35
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the frequency of the ith allele is: 

The frequency of the ith allele will be called pi (i=1…n). As before, the frequency 
of the AiAj genotype will be called xij. As with the two-allele case, the sum of all 
the genotype frequencies must add to one.

36

pi = Pii + 1
2

n

∑
j=i+1

Hij

x11 + x22 + . . . + xnn + x12 + x13 + . . . + x(n−1)n =
n

∑
i=1

n

∑
j≥1

xij = 1

pi = xii + 1
2

i−1

∑
j=1

xji + 1
2

n

∑
j=i+1

xij
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Example for n=3 alleles: 

37

i = 2 → p2 = x22 + 1
2

1

∑
j=1

xj2 + 1
2

3

∑
j=3

xij → p2 = x22 + 1
2 x12 + 1

2 x23

i = 1 → pi = x11 + 1
2

0

∑
j=1

xj1 + 1
2

3

∑
j=2

x1j → p1 = x11 + 1
2 x12 + 1

2 x13

i = 3 → p3 = x33 + 1
2

2

∑
j=1

xj3 + 1
2

3

∑
j=4

x3j → p3 = x33 + 1
2 x13 + 1

2 x23
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Example for n=4 alleles: 

38

i = 2 → p2 = x22 + 1
2

1

∑
j=1

xj2 + 1
2

4

∑
j=3

xij → p2 = x22 + 1
2 x12 + 1

2 x23 + 1
2 x24

i = 1 → pi = x11 + 1
2

0

∑
j=1

xj1 + 1
2

4

∑
j=2

x1j → p1 = x11 + 1
2 x12 + 1

2 x13 + 1
2 x14

i = 3 → p3 = x33 + 1
2

2

∑
j=1

xj3 + 1
2

4

∑
j=4

x3j → p3 = x33 + 1
2 x13 + 1

2 x23 + 1
2 x34

i = 4 → p4 = x44 + 1
2

3

∑
j=1

xj4 + 1
2

4

∑
j=5

x4j → p3 = x44 + 1
2 x14 + 1

2 x24 + 1
2 x34
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i = 1 → p1 = x11 + 1
2 x12 + 1

2 x13

i = 2 → p2 = x22 + 1
2 x12 + 1

2 x23

i = 3 → p3 = x33 + 1
2 x13 + 1

2 x23

i = 1 → p1 = x11 + 1
2 x12 + 1

2 x21 + 1
2 x13 + 1

2 x31

i = 2 → p2 = x22 + 1
2 x12 + 1

2 x21 + 1
2 x13 + 1

2 x31

The order of the alleles does not matter and both orientations can be combined in the same 
heterozygote. (e.g. ).H12 → x12 + x21

i = 3 → p3 = x33 + 1
2 x13 + 1

2 x31 + 1
2 x23 + 1

2 x32
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G = pi
2

i=1

k

∑

H = 1−G = 1− pi
2

i=1

k

∑

The total frequency of homozygotes is given by

G is called the homozygosity of the locus.  

The heterozygosity of the locus is given by

Note : The definition of heterozygosity uses only allele frequency, 
not genotype frequencies!

40
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In statistics, degrees of freedom (df) refer to the number of values in the 
final calculation of a statistic that are free to vary. They are a crucial concept 
when working with various statistical tests and distributions. Degrees of 
freedom represent the flexibility in a sample or data set, allowing for a more 
accurate assessment of uncertainty in statistical calculations. For example, in 
a chi-square test, degrees of freedom are related to the number of 
categories in a contingency table. Understanding degrees of freedom is 
essential for interpreting the results of statistical tests and making valid 
inferences.

41

df = n(genotypes) − n(alleles)
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A1 A1  A2 A1  A2  A3 A1  A2  A3  A4

A1A1

A1A1

A2A2

A3A3

A4A4

A1A2

A1A3

A1A4

A2A3

A2A4

A3A4

A1A1

A2A2

A3A3

A1A2

A1A3

A2A3

A1A1

A1A2

A2A2

n=1 n=3 n=6 n=10

42

At a locus with n alleles, how many different genotypes are there?

n(genotypes) = n(n + 1)
2



PopGen ▷ Hardy-Weinberg Principle 

UniBS | EvoGen | JCW 

Example for Alkaline phosphatase locus with 3 alleles (Harris 1966).

*Alkaline phosphatase (ALP, ALKP) is a hydrolase enzyme responsible 
for removing phosphate groups of molecules, including nucleotides and 
proteins.

Genotype* Number Frequency

SS 141 0.4247

SF 111 0.3343

FF 28 0.0843

SI 32 0.0964

FI 15 0.0452

II 5 0.0151

Total 332 1.0000

43
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Genotype Number Frequency

SS 141 0.4247

SF 111 0.3343

FF 28 0.0843

SI 32 0.0964

FI 15 0.0452

II 5 0.0151

Total 332 1.0000

Alleles frequencies:

→ observed genotype frequencies

f(S) = 0.4247 + 1
2 0.3343 + 1

2 0.0964 = 0.6401



PopGen ▷ Hardy-Weinberg Principle 

UniBS | EvoGen | JCW 

f (S) = 0.4247 + 1
2 0.3343+ 1

2 0.0964 = 0.6401
f (F) = 0.0843+ 1

2 0.3343+ 1
2 0.0452 = 0.2741

f (I ) = 0.0151+ 1
2 0.0964 + 1

2 0.0452 = 0.0859

45

Genotype Number Frequency

SS 141 0.4247

SF 111 0.3343

FF 28 0.0843

SI 32 0.0964

FI 15 0.0452

II 5 0.0151

Total 332 1.0000

Alleles frequencies:
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f (SS)expected = f (S)2

f (FF)expected = f (F)2

f (II )expected = f (I )2

f (SF)expected = 2*( f (S)* f (F))
f (SI )expected = 2*( f (S)* f (I ))
f (FI )expected = 2*( f (F)* f (I ))

46

f (S) = 0.6401
f (F) = 0.2741
f (I ) = 0.0859

Expected frequency for 
homozygotes:

Expected frequency for 
heterozygotes:
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Genotype Number GT-Frequency expected 
Frequency

expected 
Number

SS 141 0.4247 0.4097 136.03

SF 111 0.3343 0.3509 116.50

FF 28 0.0843 0.0751 24.94

SI 32 0.0964 0.1100 36.51

FI 15 0.0452 0.0471 15.63

II 5 0.0151 0.0074 2.45

Total 332 1.0000 1.0002 332.07
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Genotype
observed 
Number

expected 
Number

∆2 ∆2 / exp

SS 141 136.03 24.7 0.18
SF 111 116.50 30.3 0.26
FF 28 24.94 9.4 0.38
SI 32 36.51 20.3 0.56
FI 15 15.63 0.4 0.03
II 5 2.45 6.5 2.65

Total 332 332.06 4.05
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= χ2
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1-pchisq(4.05, 3)
[1] 0.256
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χ2 = 4.05
df = 6 − 3 = 3
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χ2 > 7.5
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p.v <- function(x, df=3){
       1-pchisq(x, df)
       }
# Plot
plot(p.v, xlim = range(1:10),
          xlab = "Chi^2",
          ylab = "p-value")
abline(h = 0.05, col = "red")

χ2 > 7.8
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With a high probability, we assume the population is in H-W at the 
alkaline phosphatase locus.
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Conclusion:
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The classical  test has limits!χ2
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The classical chi-squared test is commonly used to assess whether the observed genotype frequencies in 
a population deviate from the genotype frequencies expected under Hardy-Weinberg equilibrium (HWE). 
Hardy-Weinberg equilibrium is a fundamental principle in population genetics that describes the 
distribution of genetic variation in an idealised, non-evolving population. 

In the context of testing for HWE, the limitations of the classical chi-squared test are: 

- If the sample size is too small, the test may fail to detect subtle departures from equilibrium. 

- It may not have enough statistical power to detect differences for rare alleles. 

- When dealing with multiple loci, the test may not take into account interactions between loci and their 
combined effects on deviations from HWE. 

To address some of these limitations, more advanced statistical tests and methods have been developed, 
such as exact tests, likelihood ratio tests and Bayesian approaches. These methods can provide more 
accurate assessments of departures from HWE, particularly in situations where the classical chi-squared 
test may fall short due to its assumptions and limitations. 
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The chi-square test is only an approximation of the actual probability 
distribution, and the approximation becomes poor when expected numbers are 
small. Therefore testing for Hardy-Weinberg proportions at loci with many alleles, 
such as microsatellite loci, could be a problem because many genotypes will have 
extremely low expected numbers.

Nalleles = 23⇒Genotypes = n(n +1)
2

= 23(23+1)
2

= 279

Olsen et al. (2011)
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d. f . : 279 − 23= 256
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p.v <- function(x, df=256){
       1-pchisq(x, df)
       }
# Plot
plot(p.v, xlim = range(1:500),
          xlab = "Chi^2",
          ylab = "p-value")
abline(h = 0.05, col = "red")

χ2 > 290
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Deviations from Hardy-Weinberg equilibrium (HWE) can indicate inbreeding, population 

stratification and even genotyping problems. In samples of affected individuals, these 

deviations can also provide evidence of association. Tests for HWE are commonly 

performed using a simple  goodness-of-fit test. We show that this  test can have 

inflated type I error rates (false positives) even in relatively large samples (e.g., samples 

of 1,000 individuals containing ~100 copies of the minor allele). Building on previous work, 

we describe accurate tests for HWE, together with efficient computational methods for 

their implementation. Our methods adequately control for type I error in large and small 

samples and are computationally efficient. They have been implemented in freely available 

code that will be useful for assessing the quality of genotype data and for detecting 

genetic association or population stratification in very large datasets.

χ2 χ2
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x <- c(5,12,6)
names(x) <- c("AA","AB","BB")
HW.extest <- HWExact(x, verbose = TRUE)

Exact test for Hardy-Weinberg equilibrium

Haldane Exact test for Hardy-Weinberg equilibrium (autosomal)
using SELOME p-value
sample counts: nAA =  5 nAB =  12 nBB =  6 
H0: HWE (D==0), H1: D <> 0 
D =  0.2608696 p-value =  1 
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Exact conditional tests are often required to statistically assess whether a sample of diploids 
comes from a population with Hardy-Weinberg proportions, or to confirm the accuracy of 
genotype assignments. This requirement is particularly common when the sample contains 
multiple alleles and sparse data, rendering asymptotic methods such as the common χ2 test 
unreliable. Such an exact test can be performed using the likelihood ratio as the test statistic, 
rather than the more commonly used probability test. The conceptual advantages of using the 
likelihood ratio are discussed. A substantially improved algorithm is described that allows a full-
enumeration exact test to be performed on sample sizes too large for previous methods. An 
improved Monte Carlo algorithm is also proposed for samples that preclude full enumeration. 
These algorithms are approximately two orders of magnitude faster than those currently in use. 
Finally, methods are derived to compute the number of possible samples with a given set of 
allele counts, a useful quantity for evaluating the feasibility of the full enumeration procedure.
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x <- c(5,12,6)
names(x) <- c("AA","AB","BB")
HW.ratiotest <- HWLratio(x, verbose = TRUE)

Ratio test for Hardy-Weinberg equilibrium

Likelihood ratio test for Hardy-Weinberg equilibrium
G2 = 0.04754276 DF = 1 p-value = 0.8273956
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Classical autosomal tests for Hardy-Weinberg equilibrium: 
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library("HardyWeinberg")

nGT <- c(AA = 5, AB = 12, BB = 6)

## Chi-square test
HardyWeinberg::HWChisq(nGT)

## Likelihood ratio test 
HardyWeinberg::HWLratio(nGT)

## Exact test 
HardyWeinberg::HWExact(nGT)

## Permutation test 
HardyWeinberg::HWPerm(nGT)

## Power calculations 
HardyWeinberg::HWPower(y = nGT)

☛ have a look at the R examples 
on the course website
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A3  <- c(
  SS = 141,
  SF = 111,
  FF = 28,
  SI = 32,
  FI = 15,
  II = 5
)
A3     <- toTriangular(A3)
A3.out <- HWPerm.mult(A3)
A3.out$pval

Permutation test for HWE (autosomal)
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50-

100-
200-
300-

AA or AB

?

Null alleles at microsatellite loci result from 
nucleotide substitutions that prevent primers from 
binding (Brookfield 1996). Heterozygotes for a null 
allele and another allele appear as homozygotes on 
a gel.  

The presence of null alleles results in an apparent 
excess of homozygotes relative to Hardy-Weinberg 
proportions. Brookfield (1996) discusses the 
estimation of null allele frequencies in the case of 
more than three alleles. Kalinowski and Taper (2006) 
have presented a maximum likelihood approach for 
estimating null allele frequencies at microsatellite 
loci.
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Source: Allendorf & Luikart (2007) Conservation and the Genetics of Populations


