Evolutionary Genetics

LV 25600-01 | Lecture with exercises | 4KP

Jean-Claude Walser

jean-claude.walser@env.ethz.ch

Actually, that's the coffee machine...this is the next-gen sequencer.

Next (Next) Generation Sequencing Hype

Next (Next) Generation Sequencing Reality

HS20 | UniBS | JCW

The **First Law of Technology** says we invariably **overestimate** the **short-term impact** of a truly transformational discovery, while **underestimating** its **longer-term effects**.

https://www.scientificamerican.com/

Sanger (chain termination)

Roche 454 Pyrosequencing (pyrophosphate) Ion Torrent (semiconductor technology) Illumina Sequencing by Synthesis (fluorescent) **PacBio** (fluorophore) **Nanopore** (ionic current) Helicos - SeqLL (fluorescent) Bionano - Saphyr (third-generation optical mapping)

Pyrosequencing

GS Junior

The **PyroMark** uses Pyrosequencing technology for real-time, sequence-based detection and quantification of sequence variants and epigenetic methylation. The PyroMark Q24 is highly suited for the analysis of CpG methylation, SNPs, insertion/deletions, STRs, variable gene copy number, as well as for microbial identification and resistance typing.

Pyrosequencing (pyrophosphate)

The first step cleaves the triphosphate nucleotide after an addition, releasing pyrophosphate. The second step converts pyrophosphate into adenosine triphosphate (ATP) via the enzyme ATP sulfurylase. The third step uses the newly synthesized ATP to catalyze the conversion of luciferin into oxyluciferin via the enzyme luciferase and this reaction generates a quanta of light that is captured from the picotiter plate by a charge- coupled camera.

Ion Torrent (semiconductor technology)

Illumina Sequencing by Synthesis (fluorescent)

http://www.illumina.com

Sequencing by Synthesis (fluorescent)

Sequencing by Synthesis. dNTP fluorescence is translated to a base call.

http://www.pacb.com

Data from a 35 kb size-selected *E. coli* library using the SMRTbell Express Template Prep Kit 2.0 on a Sequel II System (1.0 Chemistry, Sequel II System Software v7.0, 15-hour movie)*.

PacBio (fluorophore)

MinION Mk1C

HS20 | UniBS | JCW

The proportion of annotated genes and their types of annotations for nine sequenced genomes (as of February 2013). Humans (Homo sapiens) and Arabidopsis thaliana have the highest number of annotations for animals and plants, respectively. They also have the most experimentally derived annotations. Most other species, except Drosophila melanogaster, are annotated mostly electronically.

Primmer et al. (2013) Mol Ecol

Extended Single Reads (SR) with Index

Fasta Fastq (Fasta with Quality - Illumina) Bam (PacBio) Fast5 (HDF5 - ONT)

Start

Fasta (>) Sequence Data Format

- 1 -> Y999847.1 BY999847 Moon Jellyfish cDNA library Aurelia aurita cDNA clone Aa_plW_142145_H14, mRNA sequence
- 2 AAAATACCGCATGATTGTTCGTTTCACAAACAAAGATATAGCTTGCCAGATAGCGTATGCCAGATTGCAA
- 3 GGAGATGTGATCATTTGTGCAGCTTATGCTCATGAACTCCCAAGATATGGTGTCAAGGTCGGGTTGACCA
- 4 ACTATGCAGCTGCTTATTGCACTGGCCTCTTGCTCGCAAGAAGGCTCCTTTCAAAATTGAAATTGGCTGA
- 6 CCTTTCCGTTGTTACCTTGATATTGGCCTTGCCAGAACCTCAACTGGTGCCAAGATCTTTGGTGCATTGA
- 7 AAGGTGCAGTTGATGGTGGACTTGACATCCCACACAGCAACACGAGATTCCCTGGTTATGACAATGAAGC
- 8 AAAGGAATTTGACCCAGAGGTGCACAGACAACACA...

Sequence (nucleotide or protein)

File Suffix: sequence(s).fa, sequence(s).fasta Special cases: sequences.mfa (multiple sequences) sequences.afa (aligned sequences)

Fastq (@) Sequence Data Format

Current Fastq Header Format (version > 1.8)

a. unique instrument name

- b. run id
- c. flowcell id
- d. flowcell lane
- e. tile number within the flowcell lane
- f. x-coordinate of the cluster within the tile
- g. y-coordinate of the cluster within the tile

h. the member of a pair, 1 or 2 (paired-end or mate-pair reads only)

- i. Y if the read fails filter (read is bad), N otherwise
- j. 0 when no control bits are on
- k. index sequence

Older Fastq Header Format (version < 1.8)

- a. unique instrument name
- b. flowcell lane
- c. tile number within the flowcell lane
- d. x-coordinate of the cluster within the tile
- e. y-coordinate of the cluster within the tile
- f. index number for a multiplexed sample (0 for no indexing)
- g. the member of a pair, /1 or /2 (paired-end or mate-pair reads only)

Nucleic Acids Research Advance Access published December 16, 2009

Nucleic Acids Research, 2009, 1–5 doi:10.1093/nar/gkp1137

The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants

Peter J. A. Cock^{1,*}, Christopher J. Fields², Naohisa Goto³, Michael L. Heuer⁴ and Peter M. Rice⁵

ASCII encoded quality scores

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	ssssssssss	ssss		
· · · · · · · · · · · · · · · · · · ·		******	*****	
	IIIIII	IIIIIIIIIIIIIIIIIIIIIIIII		
	J JJJ	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	13333333333333	
LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL	LLLLLLLLL	LLLL		
!"#\$%&'()*+,/0123456789:;	<=>?@ABCDE	FGHIJKLMNOPQRSTUVWXYZ	[\]^ `abcdefghijklmnop	grstuvwxyz{ }~
		_		
33 59	64	73	104	126
0		40		
-5	0	9		
	0	9	40	
	3	9		
0.2		41		
S - Sanger Phred+33.	raw reads	typically (0, 40)		
X - Solexa Solexa+64.	raw reads	typically (-5, 40)		
T = Tllumina 1.3+ Phred+64.	raw reads	typically (0, 40)		
J = Illumina 1.5+ Phred+64.	raw reads	typically (3, 40)		
with Osupused laupused	2=Read Se	gment Quality Control	Indicator (bold)	
(Noto: See discussion ak	evel	gment guarrey control	indicator (bord)	
(Note: See discussion at	ve).	turni gollin (0, 41)		
L - IIIumina 1.8+ Phred+33,	raw reads	cypically (0, 41)		

Encoding	ASCII	ASCII Q	
!	33	0	1.00000
Ш	34	1	0.79433
#	35	2	0.63096
\$	36	3	0.50119
%	37	4	0.39811
&	38	5	0.31623
	39	6	0.25119
(40	7	0.19953
)	41	8	0.15849
*	42	9	0.12589
+	43	10	0.10000
,	44	11	0.07943
-	45	12	0.06310
	46	13	0.05012
/	47	14	0.03981
0	48	15	0.03162
1	49	16	0.02512
2	50	17	0.01995
3	51	18	0.01585
4	52	19	0.01259
5	53	20	0.01000
6	54	21	0.00794
7	55	22	0.00631
8	56	23	0.00501
9	57	24	0.00398
:	58	25	0.00316
•	59	26	0.00251
<	60	27	0.00200
=	61	28	0.00158
>	62	29	0.00126
?	63	30	0.00100
@	64	31	0.00079
A	65	32	0.00063
В	66	33	0.00050
C	67	34	0.00040
D	68	35	0.00032
E	69	36	0.00025
F	70	3/	0.00020
G	/1	38	0.00016
Н	72	39	0.00013
	73	40	0.00010
J	/4	41	0.00008

Phred Quality Score

 $Q = -10\log_{10} P$

Base-Calling Error Probability

 $P = 10^{\frac{-Q}{10}}$

Q	Р	Accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1,000	99.9%
40	1 in 10,000	99.99%

```
## R - Function
# ascii character > decimal value
asc <- function(x) {</pre>
           strtoi(charToRaw(x),16L)
           }
asc("!")
# decimal value > ascii character
chr <- function(n) {
           rawToChar(as.raw(n))
           }
chr("33")
```


Schirmer et al. BMC Bioinformatics (2016) 17:125 DOI 10.1186/s12859-016-0976-y

BMC Bioinformatics

RESEARCH ARTICLE

Open Access

Illumina error profiles: resolving fine-scale variation in metagenomic sequencing data

Melanie Schirmer^{1,2,4*}, Rosalinda D'Amore³, Umer Z. Ijaz⁴, Neil Hall³ and Christopher Quince⁵

Abstract

Background: Illumina's sequencing platforms are currently the most utilised sequencing systems worldwide. The technology has rapidly evolved over recent years and provides high throughput at low costs with increasing read-lengths and true paired-end reads. However, data from any sequencing technology contains noise and our understanding of the peculiarities and sequencing errors encountered in Illumina data has lagged behind this rapid development.

Results: We conducted asystematic investigation of errors and biases in Illuminadata based on the large stocllection of in vitro metagenomic data sets to date. We evaluated the Genome Analyzer II, HiSeq and MiSeq and tested state-of-the-art low input library preparation methods. Analysing in vitro metagenomic sequencing data allowed us to determine biases directly associated with the actual sequencing process. The position- and nucleotide-specific analysis revealed a substantial bias related to motifs (3mers preceding errors) ending in "GG". On average the top three motifs were linked to 16 % of all substitution errors. Furthermore, a preferential incorporation of ddGTPs was recorded. We hypothesise that all of these biases are related to the engineered polymerase and ddNTPs which are intrinsic to any sequencing-by-synthesis method. We show that quality-score-based error removal strategies can on average remove 69 % of the substitution errors - however, the motif-bias remains. **Conclusion:** Single-nucleotide polymorphism changes in bacterial genomes can cause significant changes in phenotype, including antibiotic resistance and virulence, detecting them within metagenomes is therefore vital. Current error removal techniques are not designed to target the peculiarities encountered in Illumina sequencing data and other sequencing-by-synthesis methods, causing biases to persist and potentially affect any conclusions drawn from the data. In order to develop effective diagnostic and therapeutic approaches we need to be able to identify systematic sequencing errors and distinguish these errors from true genetic variation.

Substitutions

Illumina

Average substitution rates

Platform	R1/R2	А	с	G	т
GAII	R1	0.0015	0.0010	0.0008	0.0018
GAII	R2	0.0035	0.0029	0.0019	0.0026
HiSeq	R1	0.0004	0.0004	0.0004	0.0008
HiSeq	R2	0.0007	0.0007	0.0007	0.0012
MiSeq	R1	0.0012	0.0009	0.0009	0.0012
MiSeq	R2	0.0033	0.0021	0.0015	0.0031

HS20 | UniBS | JCW

Error Correction

Read quality Number of reads (coverage)

Error Correction

Read quality Number of reads (coverage) Phred score

Error Rate

BAM → FASTQ BAM → CCS.FASTX

HS20 | UniBS | JCW

Circular Consensus Sequences (CCS)

HS20 | UniBS | JCW

Constitution Laboratory DioRxiv Laboratory The PREPRINT SERVER FOR BIOLOGY

Wenger et al. (2019) Highly-accurate long-read sequencing improves variant detection and assembly of a human genome.

A SMRTbell library tightly distributed at 15 kb was chosen for circular consensus sequencing based on estimates of 150 kb polymerase read length and a requirement of 10 passes to achieve Q30 read accuracy. CCS reads with a predicted accuracy of at least Q20 (99%) were retained. The total CCS read yield was 89 Gb, an average of 2.3 Gb per SMRT Cell, with an average read length of 13.5 kb ± 1.2 kb. The predicted accuracy of the CCS reads has a median of Q30 (99.9%) and a mean of Q27 (99.8%).

Why does it not improve anymore?

Q50 \rightarrow p=1e-05 \rightarrow 40 x coverage

	Mappable length (bp)			Error rate (Proportion of overall error) (%)				
Read type	Mean	Median	Standard deviation	Maximum	Overall	Insertion	Deletion	Mismatch
PacBio CCS	1772	1464	1132	8006	1.72	0.087 (5.06)	0.34 (19.48)	1.30 (75.46)
PacBio subread	1570	1299	1076	16040	14.20	5.92 (41.71)	3.01 (21.17)	5.27 (37.12)
ONT 2D	1861	1754	882	9126	13.40	3.12 (23.30)	4.79 (35.70)	5.50 (40.99)
ONT 1D	1695	1602	824	9345	20.19	2.93 (14.51)	7.52 (37.24)	9.74 (48.25)

MITOCHONDRIAL DNA PART B: RESOURCES 2019, VOL. 4, NO. 1, 408–409 https://doi.org/10.1080/23802359.2018.1547133

ARTICLE

Long-read sequencing of benthophilinae mitochondrial genomes reveals the origins of round goby mitogenome re-arrangements

Silvia Gutnik^a, Jean-Claude Walser^b and Irene Adrian-Kalchhauser^c

^aBiozentrum, Department Growth & Development, University of Basel, Basel, Switzerland; ^bGenetic Diversity Centre Zurich, ETH Zurich, Zurich, Switzerland;^cProgram Man-Society-Environment, Department of Environmental Sciences, University of Basel, Basel, Switzerland

MITOCHONDRIAL DNA PART B: RESOURCES 2019, VOL. 4, NO. 1, 408–409 https://doi.org/10.1080/23802359.2018.1547133 Taylor & Francis Taylor & Francis Group

ARTICLE

OPEN ACCESS Check for updates

Long-read sequencing of benthophilinae mitochondrial genomes reveals the origins of round goby mitogenome re-arrangements

Silvia Gutnik^a, Jean-Claude Walser^b and Irene Adrian-Kalchhauser^c

^aBiozentrum, Department Growth & Development, University of Basel, Basel, Switzerland; ^bGenetic Diversity Centre Zurich, ETH Zurich, Zurich, Switzerland;^cProgram Man-Society-Environment, Department of Environmental Sciences, University of Basel, Basel, Switzerland

Origin of the re-arranged **tRNA cluster** Gln, Ile, Met. Most Gobiidae carry the arrangement Ile, Gln, Met without spacers. Benthophilinae (subfamily of gobies) however carry the arrangement Gln, Ile, Met, and feature variable length spacers between the genes.

FASTQ QUALITY CONTROL

Quality Scores per Base

59

FastQC

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/)

FASTX-Toolkit

(http://hannonlab.cshl.edu/fastx_toolkit/)

USEARCH

(https://www.drive5.com/usearch/)

PRINSEQ

(http://edwards.sdsu.edu/cgi-bin/prinseq/prinseq.cgi)

Galaxy

(http://galaxyproject.org)

Rqc

(https://bioconductor.org/packages/release/bioc/vignettes/Rqc/inst/doc/Rqc.html)

CLC Genomic Workbench

(http://www.clcbio.com/products/clc-genomics-workbench/)

Geneious

(http://www.geneious.com/)

ssh -Y <student?>@gdcsrv2.ethz.ch fastqc -v fastqc

FastQC High Throughput Sequence QC Report Version: 0.11.2

www.bioinformatics.babraham.ac.uk/projects/ © Simon Andrews, Pierre Lindenbaum, Brian Howard, Phil Ewels 2011-14, Picard BAM/SAM reader ©The Broad Institute, 2013 BZip decompression ©Matthew J. Francis, 2011 Base64 encoding ©Robert Harder, 2012

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Q FastQC _ □ x						
<u>F</u> ile <u>H</u> elp						
1_S1_L001_R1_001.fastq.gz 2_S2_L001_R2_001.fastq.gz						
Basic Statistics	Basic sequence stats					
	Measure	Value				
🧭 Per base sequence quality	Filename	1_S1_L001_R1_001.fastq.gz				
	File type	Conventional base calls				
	Encoding Tatal Seguences	Sanger / Illumina 1.9				
区 Per base sequence content	Filtered Sequences	841152				
Per hase GC content	Sequence length	35-151				
	%GC	49				
Per sequence GC content						
Per base N content	Basic Statisitcs never raises a warning nor an error.					
Gequence Length Distribution	n					
Sequence Duplication Levels						
Overrepresented sequences		Good				
Kmer Content		Warning				
		Frror				
	The state (C - 1) shall be a set of the state of the state					
	The traffic lights are context dependend!					
[1					

A warning will be issued if the lower quartile for any base is less than 10, or if the median for any base is less than 25. This module will raise a failure if the lower quartile for any base is less than 5 or if the median for any base is less than 20.

A warning is raised if the most frequently observed mean quality is below 27 - this equates to a 0.2% error rate. An error is raised if the most frequently observed mean quality is below 20 - this equates to a 1% error rate.

HS20 | UniBS | JCW

This module issues a warning if the difference between A and T, or G and C is greater than 10% in any position. This module will fail if the difference between A and T, or G and C is greater than 20% in any position.

Sequence content across all bases

In a random library you would expect that there would be little to no difference between the different bases of a sequence run, so the line in this plot should run horizontally across the graph. The overall GC content should reflect the GC content of the underlying genome.

GC content per base:

In a normal random library you would expect to see a roughly normal distribution of GC content where the central peak corresponds to the overall GC content of the underlying genome. Since we don't know the the GC content of the genome the modal GC content is calculated from the observed data and used to build a reference distribution.

HS20 | UniBS | JCW

NGS FastQC - N.Content

This module raises a warning if any position shows an N content of >5%.

This module will raise an error if any position shows an N content of >20%.

HS20 | UniBS | JCW

GTCGGGTTTTACCATTGGGTTTTGGGTATTTCCACCCCCGAATGGCTTGCGGT<mark>NTGTACNNNNNNNNNNNGNNTNNN</mark>GTAAATAAACTTTCTGGATGGTGT TCTTTAGTAAAAGGCGAAAGATTTATTCGTTCTGTATTGACGCCATGCCGGGT<mark>NNCTTTNNNNNNNNNNNNNT</mark>TATACAGCTTTGTGGAAATTTAC AAAAATAGTACTTCAGAGGTAATAAATAAAATTATACCTCACCGTAAGCCTAC TGACAGAGTTACAATTGACTTCGTCCAAATCCAGAGAGGCATAGTTGACCATOAAAGACNNNNNANNNNGNTGNNNGTCGTCGTCGTCGGCCTAGGCACTGAC TGTTGGCTTTGCCGAGATATACTGAGTTTATAGTTTCTGGCTTGGATGGCAGG**NAATTTNNNNNCNNNNTNCANNN**TTCTCAATGCCTTTATTCCAGAAA ACCTACAAGAGTTTTAAACTCTAAATGCAACTGGTTTCTAATTATTGAAAATANTTTATNNNNNCNNNNGNCTNNNCTCAGTAAACTCAGGGGGGGGAGTAGAA CTAAATATTGTTTGGAGTGGCAATGTGCCCAGCTGAAACACTGGGCACTTCAA<mark>NCTGCCNNNNNGNNNNGNTGNNN</mark>CTCTCTCTCATTAATGTTCAATGAGA GTGTGTCACACTCCAATGAAAAAGAGATAAAATCCTGGTGTAATTGAGACAAT**NNTNCANNNNNNNNNNNNNNNN**CCATTGAGCAAGTATGGTAACGAT GAGAACGTTATTATTACGAACATAGTTACGAACTGCAGGATAATATTATTGT<mark>NGCTGANNNNNTNNNNTNTCNNN</mark>TTCACCCCGATAAGAACAAATTATT CTCTTTTTGAGCCCCTTTTTGCCTTTTTTTTTTTTTTAAACCTAACTATGGGACACTTATT**NTTAAANNNNNNNNNNNNNNN**TTTTTTAGCAGTAAAAGCTGTAACC CCATAGAGAGAGGCATAAAGCTCAACAGCCGTTTGAAGAAAACTTTTTTGTGC GTGGTGAAGACGTTTACACTCGTCCGTTCCACATTCCTTTTCCTTCGTACACT**NTGAACNNNNNNNNNNNTNNTNNG**ACACCGGTAACAGCATCTTTTTT CATCATCCACATCTGCTGCCGCAAGCATTGTTGGTCATCATCATCATCGCGTCINTATCTNNNNNNNNNNNTNNTNNTATTTCATTGCCCGTGTCATGCAG GAACAAACAGCTCCTATACGTGAAAATACCAAAAGGGTCGTTGCATCATTGAA<mark>TGTTTATNNNNCANANGCCACTNN</mark>ATATGGCATGAAGGTGCTTAACGA

This module will raise a warning if all sequences are not the same length. This module will raise an error if any of the sequences have zero length.

Because the duplication detection requires an exact sequence match over the whole length of the sequence any reads over 75bp in length are truncated to 50bp for the purposes of this analysis. Even so, longer reads are more likely to contain sequencing errors which will artificially increase the observed diversity and will tend to underrepresent highly duplicated sequences.

2	FastQ	ic		_ = ×								
<u>File</u> <u>H</u> elp												
1_S1_L001_R1_001.fastq.gz 2_S2_L001_R2_001.fastq.gz												
Basic Statistics	Overrepresented sequences											
	Sequence	Count	Percentage	Possible Source								
Per base sequence quality		1531	0.182	No Hit								
Per sequence quality scores												
📀 Per base sequence content												
📀 Per base GC content												
🕕 Per sequence GC content												
🧭 Per base N content												
Osequence Length Distribution												
O Sequence Duplication Levels												
Overrepresented sequences												
🕕 Kmer Content												
]								

This module lists all of the sequence which make up more than 0.1% of the total. To conserve memory only sequences which appear in the first 200,000 sequences are tracked to the end of the file. It is therefore possible that a sequence which is overrepresented but doesn't appear at the start of the file for some reason could be missed by this module.

This module will issue a warning if any k-mer is enriched more than 3 fold overall, or more than 5 fold at any individual position.

Choose the NGS technology and sample design according to your needs.

Keep your raw data safe and submit it as early as possible.

Coping one file (archive) is safer than coping multiple files.

NGS Data Submission

Data Corruption

- Upload one file per sample.
- Upload only archived files.
- Use md5sum to confirm data transfer.

A word of advice, copy one file (archive) is safer than coping multiple files.

The European Nucleotide Archive (ENA) captures and presents information relating to experimental workflows that are based around nucleotide sequencing. A typical workflow includes the isolation and preparation of material for sequencing, a run of a sequencing machine in which sequencing data are produced and a subsequent bioinformatic analysis pipeline. ENA records this information in a data model that covers input information (sample, experimental setup, machine configuration), output machine data (sequence traces, reads and quality scores) and interpreted information (assembly, mapping, functional annotation).

Sequence Read Archive (SRA) makes biological sequence data available to the research community to enhance reproducibility and allow for new discoveries by comparing data sets. The SRA stores raw sequencing data and alignment information from high-throughput sequencing platforms, including Roche 454 GS System®, Illumina Genome Analyzer®, Applied Biosystems SOLiD System®, Helicos Heliscope®, Complete Genomics®, and Pacific Biosciences SMRT®.

Data Deposition Example from the Literature:

Mushegian *et al.* (2018) Environmental sources of bacteria and genetic variation in behavior influence host-associated microbiota. AEM doi:10.1128/AEM.01547-18.

Sequence data are deposited in the European Nucleotide Archive of the EBI under accession number PRJEB30308 (http://www.ebi.ac.uk/ena/data/view/PRJEB30308). Data tables, OTUs sequences and code used for analysis can be found on Github at https://github.com/amusheg/Daphnia-microbiota-behavior and will be deposited in Dryad upon publication.

EMBL-EBI													Servio	es Resea	rch Train	ing About us
European Nucleotide Archive									mples: BN0000	65, <u>histone</u>			A	Search dvanced equence		
Home Sear	rch & Browse	Submit & Upda	ate Software	e About EN	A Supp	ort										
Study: F	PRJEB303	08	÷	:	:										Contac	t Helpdesk 🖂
Microbiota ass	ociated with Dap	ohnia exhibiting	genetic variati	ion in behavio	r											
View: Proje	ct XML Study	XML											Dowr	load: P	roject XML	Study XML
Name Microbiota of	browsing Daphn	ia					Subr Unive	nitting (ersitaet B	Centre Basel							
Secondary a ERP112744	ccession(s)															
Description In many org examined wi planktonic, t intensity exp browsing int abundances between ind	Description In many organisms, host-associated microbial communities are acquired horizontally after birth. This process is believed to be shaped by a combination of environmental and host genetic factors. We examined whether genetic variation in animal behavior could affect the composition of the animal's microbiota in different environments. The freshwater crustacean Daphnia magna is primarily planktonic, but exhibits variation in the degree to which it browses in benthic sediments. We performed an experiment with clonal lines of D. magna showing different levels of sediment-browsing intensity exposed to either bacteria-rich or bacteria-poor sediment or whose access to sediments was prevented. We find that the bacterial composition of the environment and genotype-specific browsing intensity together influence the composition of the Daphnia-associated bacterial community. Exposure to more diverse bacteria did not lead to a more diverse microbiome, but greater abundances of environment-specific bacteria were found associated with host genotypes that exhibited greater browsing behavior. Our results indicate that, although there is a great deal of variation between individuals, behavior can mediate genotype-by-environment interaction effects on microbiome composition.															
Navigation	Read	l Files	Portal		Attrib	utes										
O Bulk Down	load Files 🛕 (If	the downloader	r app doesn't o	pen, please t	ry using Fi	irefox to la	unch it.)									
Download:	1 -	512	of 512 result	s in TEXT												
Select column	s															
Showing resi	≚ ults 1 - 10 of 5	12 results														
Study accession	Sample accession	Secondary sample accession	Experiment accession	Run accession	Tax ID	Scientific name	Instrument model	Library layout	FASTQ files (FTP)	FASTQ files (Galaxy)	Submitted files (FTP)	Submitted files (Galaxy)	NCBI SRA file (FTP)	NCBI SRA file (Galaxy)	CRAM Index files (FTP)	CRAM Index files (Galaxy)
PRJEB30308	SAMEA5166093	ERS2973813	ERX2993334	ERR2990925	1869227	bacterium	Illumina MiSeq	PAIRED	File 1 File 2	File 1 File 2	Fastq file 1 Fastq file 2	Fastq file 1 Fastq file 2	File 1	File 1		
PRJEB30308	SAMEA5166094	ERS2973814	ERX2993335	ERR2990926	1869227	bacterium	Illumina MiSeq	PAIRED	File 1 File 2	File 1 File 2	Fastq file 1 Fastq file 2	Fastq file 1 Fastq file 2	File 1	File 1		
PRJEB30308	SAMEA5166095	ERS2973815	ERX2993336	ERR2990927	1869227	bacterium	Illumina MiSeq	PAIRED	File 1 File 2	File 1 File 2	Fastq file 1 Fastq file 2	Fastq file 1 Fastq file 2	File 1	File 1		
PRJEB30308	SAMEA5166096	ERS2973816	ERX2993337	ERR2990928	1869227	bacterium	Illumina MiSeq	PAIRED	File 1 File 2	File 1 File 2	Fastq file 1 Fastq file 2	Fastq file 1 Fastq file 2	File 1	File 1		

Value

14805

22

S NCBI R	Resources 🖂 I	How To 🖂						<u>Sig</u>	n in to NCBI	
BioProject	t (BioProject	PRJEB303 Create alert	308 Advanced Bro	wse by Pr	oject attributes		Search	Help	
Display Settings: - Microbiota of browsing Daphnia Microbiota associated with Daphnia exhibiting genetic variation in behavior						Accession: PRJEB30308	Send to: - ID: 516850			
In many organisms, host-associated microbial communities are acquired horizontally after birth. More Accession PRJEB30308								Recent activity	rn Off Clear	
Scope Monoisolate Submission Registration date: 24-Jan-2019 Universitaet Basel								PRJEB30308 (1) BioPro Microbiota of browsing Daphnia		
Project Data:	: Resou	urce Name		Number of Links				 The European Nucleotide Archiv A Benchmark Study on Error As and Quality Control of CCS Rea 	/e in 2017	
SEQUENCE DAT SRA Experior Other datase BioSample	TA priments ETS e				512 512			Testing the potential of a riboson marker for DNA metabarcoding	nal 16S of insects See more	

SRA Data Details

Parameter

Data volume, Gbases

Data volume, Mbytes

OPEN ORCESS Freely available online

PLos one

High-Coverage ITS Primers for the DNA-Based Identification of Ascomycetes and Basidiomycetes in Environmental Samples

Hirokazu Toju^{1,2}*⁹, Akifumi S. Tanabe²⁹, Satoshi Yamamoto², Hirotoshi Sato³

1 The Hakubi Center for Advanced Research, Kyoto University, Sakyo, Kyoto, Japan, 2 Division of Biological Science, Graduate School of Science, Kyoto University, Sakyo, Kyoto, Japan, 3 Kansai Research Center, Forestry and Forest Products Research Institute, Nagaikyutaro-68, Momoyama, Fushimi, Kyoto, Japan

Table 2. Seven ascomycete and seven basidiomycete fungi are shown with the accession numbers of their ITS sequences.

ID	Species	Family	Order	Phylum	GenBank accession	
A1	Podostroma cornu-damae (Pat.) Boedijn	Hypocreaceae	Hypocreales	Ascomycota	AB509797	
A2	Leotia lubrica (Scop.) Pers.: Fr.	Leotiaceae	Helotiales	Ascomycota	AB509686	
A3	Phillipsia domingensis (Berk.) Berk.	Sarcoscyphaceae	Pezizales	Ascomycota	AB509610	
A4	Xylaria sp.	Xylariaceae	Xylariales	Ascomycota	AB509642	
A5	Cordyceps nutans Pat.	Cordycipitaceae	Hypocreales	Ascomycota	AB509505	
A6	Vibrissea truncorum Fr.	Vibrisseaceae	Helotiales	Ascomycota	AB509599	
A7	Trichocoma paradoxa Jungh.	Trichocomaceae	Eurotiales	Ascomycota	AB509823	
B1	Auricularia aff. auricula (Hook.) Underw.	Auriculariaceae	Auriculariales	Basidiomycota	AB509633	
B2	Bjerkandera adusta (Willd.: Fr.) Karst.	Meruliaceae	Polyporales	Basidiomycota	AB509484	
B3	Laccaria vinaceoavellanea Hongo	Hydnangiaceae	Agaricales	Basidiomycota	AB509671	
B4	Geastrum mirabile (Mont.) Fisch.	Geastraceae	Geastrales	Basidiomycota	AB509736	
B5	Boletus ornatipes Peck	Boletaceae	Boletales	Basidiomycota	AB509727	
B6	Thelephora aurantiotincta Corner	Thelephoraceae	Thelephorales	Basidiomycota	AB509809	
B7	Amanita farinosa Schw.	Amanitaceae	Agaricales	Basidiomycota	AB509651	

DNA was extracted from fruiting body specimens collected on Yakushima Island, Kagoshima Prefecture, Japan. The fruiting body specimens were deposited in Kyoto University Herbarium (KYO). See Kirk *et al.* [3] and NCBI Taxonomy (http://www.ncbi.nlm.nih.gov/guide/taxonomy/) for the taxonomy of the specimens. doi:10.1371/journal.pone.0040863.t002