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The averaged thickness of 1.2 cm-sections ranged between 150 
– 750 µm with an overall average of 319 ± 111 µm (n = 200). On 
large-scale, the biofilm was significantly thicker at the bottom 
(386 ± 117 µm, n = 100) compared to the top (252 ± 44 µm, n = 
100) (t-test, p < 0.05). 
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Interestingly, only few dominant taxa made up for the majority 
of the community composition. In the top part of the hose, 12 
taxa accounted for 92 % of the total community. A similar 
situation was identified for the dominant taxa in the bottom 
biofilm, with eleven taxa covering 91 %. Dominant taxa were 
similar between top and bottom, with only three out of 23 
being different.



Biocomputing ▷ Statistics

08.03.19 | PSC19 | JCW 



Biocomputing ▷ Statistics

08.03.19 | PSC19 | JCW  6



Biocomputing ▷ Statistics

08.03.19 | PSC19 | JCW 



Biocomputing ▷ Statistics

08.03.19 | PSC19 | JCW 



Biocomputing ▷ Statistics

08.03.19 | PSC19 | JCW 

Probability Distributions

Binomial / Normal / Poisson
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The normal distribution is one of the most important 
and most widely used distribution in statistics. It is 
sometimes called the "bell curve”. 

X ∼ N (µ,δ 2 )

µ: mean (also median and mode)
δ : standard deviation

δ 2: variance
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Why does it matter?

Parametric statistics is a branch of statistics which 
assumes that sample data comes from a population that 
follows a probability distribution based on a fixed set of 
parameters. Most well-known elementary statistical 
methods (e.g. t-test, anova) are parametric. 

Checking the distribution of your data and the 
assumptions of the statistical test is the first step of the 
analysis!!
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Group A Group B

µ = 4.03 µ = 2.90

Question: Are the two groups significantly different in the number 
of flowers they produce?
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 The data is collected from a representative, 
randomly selected portion of the total population. 

The data follow a normal distribution. 

A reasonably large sample size is used (N > 30). 

Homogeneity of variance.

T-test (parametric)
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Shapiro test: The null-hypothesis of this test is that the 
population is normally distributed. Thus, on the one hand, if 
the p-value is less than the chosen alpha level, then the null 
hypothesis is rejected and there is evidence that the data 
tested are not normally distributed.

Test of normality

> shapiro.test(groupA)
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Group A Group B

P − value = 0.34 (n.s.) P − value = 0.27 (n.s.)

P-value > 0.05 → the data of both samples does not deviate from a 
normal distribution.
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Bartlett’s test: In statistics, Bartlett's test is used to test if 
k samples are from populations with equal variances. 

Bartlett's test is sensitive to departures from normality. 
Levene's test and the Brown–Forsythe test are alternatives 
to the Bartlett test that are less sensitive to departures 
from normality.

Homogeneity of variance

> barlett.test(groupA, groupB)

https://en.wikipedia.org/wiki/Levene%27s_test
https://en.wikipedia.org/wiki/Brown%E2%80%93Forsythe_test
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Bartlett’s test is used to test the null hypothesis, H0 that all k population variances are 
equal against the alternative that at least two are different.

Group A Group B

P − value = 0.078 (n.s.)
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 The data is collected from a representative, 
randomly selected portion of the total population. 

The data follow a normal distribution. 

A reasonably large sample size is used (N > 30). 

Homogeneity of variance.

T-test (parametric)
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t.test(groupA, groupB, var.equal = TRUE)

t = 4.3915, df = 98, p-value = 2.848e-05

95 percent confidence interval:
 0.6198587 1.6419286

mean in group A mean in group B 
       4.033558        2.902665 

Answer: The two Groups are significantly different in the 
number of flowers they produce.

Question: Are the two Groups significantly different in the number 
of flowers they produce?
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The calculations behind t-values compare your sample mean(s) to the null 
hypothesis and incorporates both the sample size and the variability in the 
data. A t-value of 0 indicates that the sample results exactly equal the null 
hypothesis. As the difference between the sample data and the null 
hypothesis increases, the absolute value of the t-value increases.

t value
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Question: Are the three groups significantly different in the number 
of flowers they produce?

Group C

µ = 7.71

Group A

µ = 4.03
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The calculations behind t-values compare your sample mean(s) to the null 
hypothesis and incorporates both the sample size and the variability in the 
data. A t-value of 0 indicates that the sample results exactly equal the null 
hypothesis. As the difference between the sample data and the null 
hypothesis increases, the absolute value of the t-value increases.

t-value

t.test(groupC, groupA)

t = 14.9, df = 98, p-
value < 2.2e-16

mean of x mean of y 
 7.710984  4.033558 

t.test(groupA, groupB)

t = -4.3915, df = 98, 
p-value = 2.848e-05

mean of x mean of y 
 2.902665  4.033558  
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t.test(groupC, groupA)

t = 14.9, df = 98, p-
value < 2.2e-16

mean of x mean of y 
 7.710984  4.033558 

t.test(groupA, groupB)

t = -4.3915, df = 98, 
p-value = 2.848e-05

mean of x mean of y 
 2.902665  4.033558  
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We noted previously that one of the assumptions for the t-test is 
that the variances of the two samples are equal. However, a 
modification of the t-test known as Welch's test is said to correct 
for this problem by estimating the variances, and adjusting the 
degrees of freedom to use in the test.

t.test(sampleA, SampleB, var.equal = TRUE)

Important to remember!  

## Default S3 method:
t.test(x, y = NULL,
       alternative = c("two.sided", "less", "greater"),
       mu = 0, paired = FALSE, var.equal = FALSE,
       conf.level = 0.95, ...)
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Important to remember!  

t.test(groupB, groupA, var.equal = FALSE)
t = -4.3915, df = 92.284, p-value = 2.996e-05

t.test(groupB, groupA, var.equal = TRUE)
t = -4.3915, df = 98, p-value = 2.848e-05
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If you want to measure a trait before and after treatment (eg. 
effect of nutrient on plant growth), you need to used a paired 
sample T-test since the measurements are not independent. 

t.test(sampleA, SampleB, paired = TRUE)

Important to remember!  

## Default S3 method:
t.test(x, y = NULL,
       alternative = c("two.sided", "less", "greater"),
       mu = 0, paired = FALSE, var.equal = FALSE,
       conf.level = 0.95, ...)
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Important to remember!  

t.test(groupB, groupA, paired = FALSE)
t = -4.3915, df = 92.284, p-value = 2.996e-05

t.test(groupB, groupA,  paired = TRUE)
t = -4.6764, df = 49, p-value = 2.324e-05
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What is the degree of freedom (df)?
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degree of freedom

The t.test( ) function produces a variety of t-tests. Unlike most 

statistical packages, the default assumes unequal variance and 
applies the Welsh df modification.

t.test(groupA, groupB, var.equal = FALSE)

t.test(groupA, groupB, var.equal = TRUE)
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general definition - the number of independently variable factors affecting 

the range of states in which a system may exist.  

in statistics - the number of independent values or quantities that can be 

assigned to a statistical distribution.

degree of freedom
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banana orange strawberry pistachio blueberry

5 choices of flavours
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5 choices of flavours

but the freedom of choosing a flavour is 4

banana orange strawberry pistachio blueberryX X X X
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MORE 
T H I N G S 

CONSIDERED



Biocomputing ▷ Statistics

08.03.19 | PSC19 | JCW  34

The One Sample t-Test determines whether the sample mean is 
statistically different from a known or hypothesised population mean.

One Sample t-Test

t = x − µ
sx

 where sx =
s
n

sample <- 1:9
mean(sample)
t.test(sample, mu=5, conf.level = 0.95)
# or
sample <- (rnorm(1000, mean = 0, sd = 0.5))
t.test(sample, mu = 0, conf.level = 0.95)
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For a one-sample t-test, one degree of freedom is spent estimating the 
mean, and the remaining n - 1 degrees of freedom estimate variability.

1 2 3 4 5 6 7 8 9 10 mean

5 5 5 5 5 5 5 5 5 5 5

6 4 7 3 8 2 9 1 5 5 5

1 1 1 1 1 1 1 1 1 41 5
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A chi-square test of independence is used to determine whether two 

categorical variables are dependent.

Chi-Square Test of Independence

A1 A2

B1 6 4 10

B2 8 6 14

14 10 24

A1 A2

B1 6 10

B2 14

14 10 24

d.f. = 1 
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A1 A2 A3

B1 20
B2 20
B3 20

20 30 10 60

How much freedom is there in a 3x3 table?

Chi-Square Test of Independence
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A1 A2 A3

B1 10 0 10 20
B2 5 5 10 20
B3 5 5 10 20

20 10 30 60

A1 A2 A3

B1 5 0 15 20
B2 10 10 0 20
B3 5 0 15 20

20 10 30 60

A1 A2 A3

B1 20
B2 20
B3 20

20 10 30 60

Chi-Square Test of Independence
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A1 A2 A3

B1 10 0 10 20
B2 5 5 10 20
B3 5 5 10 20

20 10 30 60

A1 A2 A3

B1 10 0 10 20
B2 5 5 10 20
B3 5 5 10 20

20 10 30 60

A1 A2 A3

B1 10 0 10 20
B2 5 5 10 20
B3 5 5 10 20

20 10 30 60

d.f. = 4 

Chi-Square Test of Independence
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A1 A2 A3 A4 A5

B1 66

B2 40

B3 32

B4 57

23 35 33 44 60

Chi-Square Test of Independence

How much freedom is there in a 4x6 table?
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Chi-Square Test of Independence

A1 A2 A3 A4 A5

B1 12 14 3 17 20 66

B2 5 6 10 6 13 40

B3 5 8 9 6 4 32

B4 1 7 11 15 23 57

23 35 33 44 60

d.f. = (r-1)(c-1)=12 
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One approach to testing the hypothesis that genotypes are in Hardy-Weinberg 

proportions is the χ2 for goodness of fit between observed and predicted 

genotype (or phenotype) frequencies.  

We have to know how many degrees of freedom are associated with the test. 

Testing Hardy-Weinberg 
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How many degrees of freedom does a chi square test have? Normally, the degrees of freedom are equal 

to the number of observations minus 1. However, this is not true for testing the Hardy-Weinberg 

equilibrium. Instead, you have to think about how many quantities are really free to vary. Remember that 

we used the population to estimate p and q, then we used p and q to get p2, 2pq, and q2. Once we 

decided on a value for p, everything else was decided for us. Whatever p was, q had to be 1-p, and p2, 

2pq, and q2 were set as well.
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A1 A2 A3

A1 10 5 10 25
A2 5 5 0 10
A3 10 0 10 20

25 10 20 55
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A1 A2 A3

A1 10 25
A2 5 10
A3 5 10 20

25 10 20 55

A1 A2 A3

A1 10 5 10 25
A2 5 5 0 10
A3 10 0 10 20

25 10 20 55
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A1 A2 A3

A1 10 0 5 25
A2 0 5 5 10
A3 5 5 10 20

25 10 20 55

A1 A2 A3

A1 10 5 10 25
A2 5 5 0 10
A3 10 0 10 20

25 10 20 55
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A1 A2 A3

A1 10 0 5 25
A2 0 5 5 10
A3 5 5 10 20

25 10 20 55

A1 A2 A3

A1 10 25
A2 5 10
A3 4 10 20

25 10 20 55

A1 A2 A3

A1 10 5 10 25
A2 5 5 0 10
A3 10 0 10 20

25 10 20 55
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A1 A2 A3

A1 10 0 5 25
A2 0 5 5 10
A3 5 5 10 20

25 10 20 55

A1 A2 A3

A1 10 1 6 25
A2 1 5 4 10
A3 6 4 10 20

25 10 20 55

A1 A2 A3

A1 10 2 7 25
A2 2 5 3 10
A3 7 3 10 20

25 10 20 55

A1 A2 A3

A1 10 3 8 25
A2 3 5 2 10
A3 8 2 10 20

25 10 20 55

A1 A2 A3

A1 10 4 9 25
A2 4 5 1 10
A3 9 1 10 20

25 10 20 55

A1 A2 A3

A1 10 5 10 25
A2 5 5 0 10
A3 10 0 10 20

25 10 20 55

A1 A2 A3

A1 10 5 10 25
A2 5 5 0 10
A3 10 0 10 20

25 10 20 55

d.f. = 3 
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Number of alleles: 3 

Number of genotypes: 6 

Degree of freedom: 3

d. f .= # genotypes − #alleles

Genotypes = n(n +1)
2



Biocomputing ▷ Statistics

08.03.19 | PSC19 | JCW  50

Number of alleles: 4 

Number of genotypes: 10 

Degree of freedom: 6

d. f .= # genotypes − #alleles

Genotypes = n(n +1)
2
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The Mann–Whitney U test (also called the Mann–Whitney–Wilcoxon, Wilcoxon 
rank-sum test, or Wilcoxon–Mann–Whitney test) is a nonparametric test of the 
null hypothesis that it is equally likely that a randomly selected value from one 
sample will be less than or greater than a randomly selected value from a second 
sample. Unlike the t-test it does not require the assumption of normal 
distributions.

wilcoxon.test(groupA, groupB, paired = FLASE)

wilcoxon.test(groupA, groupB, paired = TRUE)

Non-parametric test

https://en.wikipedia.org/wiki/Nonparametric_statistics
https://en.wikipedia.org/wiki/Statistical_hypothesis_test
https://en.wikipedia.org/wiki/Null_hypothesis
https://en.wikipedia.org/wiki/T-test
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Normal_distribution
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Question: Are the three groups significantly different in the number 
of flowers they produce?

Group A

µ = 4.03

Group B

µ = 2.90

Group C

µ = 7.71
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 The data is collected from a representative, 
randomly selected portion of the total population. 

The data follow a normal distribution (or the 
residuals of the model are normally distributed) 

A reasonably large sample size is used (N > 20). 

Homogeneity of variance.

Anova (parametric)
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Normality of the residuals (or errors)

yij = m+ai+ϵij     

y43 = m + a3 + ϵ3,4

The equation indicates that the jth data value, from level i, is the 
sum of three components: the common value (grand mean), the 
level effect (the deviation of each level (or group) mean from the 
grand mean), and the residual (what's left over).

(m=grand mean)

(a3=mean group 3)

(a1)
(a2)

(ϵ3,4)

The equation indicates that the jth data value, from level i, is the sum of 
three components: the common value (grand mean), the level effect (the 
deviation of each level (or group) mean from the grand mean), and the 
residual (what's left over). 

yij = m+ai+ϵij     

y43 = m + a3 + ϵ3,4

The equation indicates that the jth data value, from level i, is the 
sum of three components: the common value (grand mean), the 
level effect (the deviation of each level (or group) mean from the 
grand mean), and the residual (what's left over).

(m=grand mean)

(a3=mean group 3)

(a1)
(a2)

(ϵ3,4)
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anova_model <- aov(data$value ~ data$group)
shapiro.test(residuals(anova_model))

data:  residuals(anova_model)
W = 0.99153, p-value = 0.5128

P-value > 0.05 →  The residuals of the anova model do not deviate from a 
normal distribution.

Normality of the residuals (or errors)
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Homogeneity of variance

bartlett.test(data$value ~ data$group)

Performs Bartlett's test of the null that the variances in 
each of the groups (samples) are the same.
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Group A Group B Group C

Homogeneity of variance

Bartlett's K-squared = 3.216, df = 2, p-value = 0.20
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 The data is collected from a representative, 
randomly selected portion of the total population. 

The data follow a normal distribution. 

A reasonably large sample size is used (N > 30). 

Homogeneity of variance.

 The data is collected from a representative, 
randomly selected portion of the total population. 

The data follow a normal distribution (or the 
residuals of the model are normally distributed) 

A reasonably large sample size is used (N > 20). 

Homogeneity of variance.

Anova (parametric)
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Analysis of variance (ANOVA) is used to analyze the differences 
among group means in a sample. In its simplest form, ANOVA 
provides a statistical test of whether the population means of 
several groups are equal, and therefore generalizes the t-test to 
more than two groups.

anova_model <- aov(value ~ group, data = data)
summary(anova_model)

             Df Sum Sq Mean Sq F value Pr(>F)    
group         2  632.0  316.02   185.3 <2e-16 ***

https://en.wikipedia.org/wiki/Sample_(statistics)
https://en.wikipedia.org/wiki/Statistical_test
https://en.wikipedia.org/wiki/Mean
https://en.wikipedia.org/wiki/Student%27s_t-test#Independent_two-sample_t-test
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At this point, it is important to realize that the ANOVA cannot tell 
you which specific group(s) were statistically significantly different 
from each other, only that at least two groups were.  

To determine which groups differed from each other, you need to use 
a post hoc test (e.g. Tukey's range test).
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Tukey's range test, also known as the Tukey's test, Tukey method, Tukey's honest 
significance test, or Tukey's HSD is a single-step multiple comparison procedure 
and statistical test. 

It can be used on raw data or in conjunction with an ANOVA (post-hoc analysis) to 
find means that are significantly different from each other.

TukeyHSD(anova_model)
 
$group
         diff       lwr        upr    p adj
B-A -1.130894 -1.749297 -0.5124904 8.12e-05
C-A  3.677426  3.059023  4.2958293 0.00e+00
C-B  4.808320  4.189916  5.4267229 0.00e+00

Groups A and B are not significantly different 
Group C is significantly different from A and B

https://en.wikipedia.org/wiki/Multiple_comparison
https://en.wikipedia.org/wiki/Statistical_test
https://en.wikipedia.org/wiki/ANOVA
https://en.wikipedia.org/wiki/Post-hoc_analysis
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The Kruskal–Wallis test or one-way ANOVA on ranks is a non-parametric 
method for testing whether samples originate from the same distribution. It is 
used for comparing two or more independent samples of equal or different 
sample sizes. It extends the Mann–Whitney U test, which is used for 
comparing only two groups.

kruskal_model <- kruskal.test(value ~ group, data = data)

data:  value by group
Kruskal-Wallis chi-squared = 100.19, df = 2, p-value < 2.2e-16

Non-parametric test

https://en.wikipedia.org/wiki/Non-parametric_statistics
https://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U_test
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Did you know that barplot are not he only way to visualise your data? 

Mean
Standard Deviation (SD)
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What about using boxplots instead? 
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Boxplot

You can confirm visually the 
results of the ANOVA: 

• Group A and B notches overlap 

• Group C and A/B notches do 
not overleap
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Violin Plot
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Violin plots are similar to box 
plots, except that they also show 
the probability density of the data 
at different values. 

V io l in p lots a re espec ia l ly 
informative for large dataset.

Violin Plot
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Multiple Comparisons
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The problem - When you perform a large number of statistical tests, some will have 
P-values less than 0.05 purely by chance, even if all your null hypotheses are true. 
The Bonferroni correction is one simple way to take this into account. Adjusting the 
false discovery rate using the Benjamini-Hochberg procedure is a more powerful 
method.

library(HardyWeinberg)
n   <- 1000        # sample size
m   <- 1000        # number of markers
out <- HWData(n,m) # create a random data set
HWTernaryPlot(out, 1000, region=1, 
   hwcurve=TRUE, vbounds=FALSE, vertex.cex=2)
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The problem of multiple comparisons (multiple statistical tests) has received 
increasing attention in the last few years. This is important for such techniques as the 
use of RNASeq quantities or evolutionary genomics, where the sequences of every 
gene in the genome of two or more species can be compared. There is no 
universally accepted approach for dealing with the problem; it is an area of active 
research.

The classic approach to the multiple comparison problem is to control for the error 
rate. Instead of setting the critical P level for significance to e.g. 0.05, you use a 
adjusted lower threshold. The most common adjustment method is the Bonferroni 
correction. The idea is simple, if you are doing 100 statistical tests, the critical value 
for an individual test would be 0.05/100 = 0.0005, and you would only consider 
individual tests with P-vlaues < 0.0005 (instead of 0.05) to be significant.
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t.test(groupB, groupA, var.equal = TRUE)

t = -4.3915, df = 98, p-value = 2.848e-05

t.test(groupC, groupA, var.equal = TRUE)

t = 14.9, df = 98, p-value < 2.2e-16

t.test(groupB, groupA, var.equal = TRUE)

t = 17.281, df = 98, p-value < 2.2e-16P-value: 0.05 
Bonferroni adjusted P-value: 0.05/3 = 0.0167
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The Bonferroni correction is appropriate when a single false positive in a set of tests 
would be a problem. It is mainly useful when there are a fairly small number of 
multiple comparisons and you're looking for one or two that might be significant. 
However, if you have a large number of multiple comparisons and you're looking for 
many that might be significant, the Bonferroni correction may lead to a very high 
rate of false negatives. 
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One good technique for controlling the false 
discovery rate was briefly mentioned by Simes (1986) 
and developed in detail by Benjamini and 
Hochberg (1995). Put the individual P values in 
order, from smallest to largest. The smallest P value 
has a rank of i=1, then next smallest has i=2, etc. 
Compare each individual P value to its Benjamini-
Hochberg critical value, (i/m)Q, where i is the rank, m 
is the total number of tests, and Q is the false 
discovery rate you choose. The largest P value that 
has P<(i/m)Q is significant, and all of the P values 
smaller than it are also significant, even the ones that 
aren't less than their Benjamini-Hochberg critical 
value.

Sources: Mc Donald (2014) Handbook of Biological Statistics 
               Mangiafico (2015) An R Companion for the Handbook of Biological Statistics
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The Bonferroni correction and Benjamini-Hochberg procedure 
assume that the individual tests are independent of each other. 
That might not be the case and to account for this you might 
consider multivariate analysis of variance (manova).

Reiner, A., D. Yekutieli and Y. Benjamini. 2003. Identifying differentially expressed genes using 
false discovery rate controlling procedures. Bioinformatics 19: 368-375.
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Independent Random Sampling: MANOVA assumes that the observations 
are independent of one another, there is not any pattern for the selection of 
the sample, and that the sample is completely random. 

Level and Measurement of the Variables: MANOVA assumes that the 
independent variables are categorical and the dependent variables are 
continuous or scale variables. 

Absence of multicollinearity: The dependent variables cannot be too 
correlated to each other.  

Normality: Multivariate normality (Shapiro-Wilk test) is present in the data. 

Homogeneity of Variance: Variance between groups is equal.
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Levene’s Test of Equality of Variance: Used to examine whether or not the variance between independent 
variable groups are equal; also known as homogeneity of variance  Non-significant values of Levene’s test 
indicate equal variance between groups. 

Box’s M Test: Used to know the equality of covariance between the groups.  This is the equivalent of a 
multivariate homogeneity of variance. Usually, significance for this test is determined at α = .001 because 
this test is considered highly sensitive. 

Partial eta square: Partial eta square (η2) shows how much variance is explained by the independent 
variable. It is used as the effect size for the MANOVA model. 

Post hoc test: If there is a significant difference between groups, then post hoc tests are performed to 
determine where the significant differences lie (i.e., which specific independent variable level significantly 
differs from another). 

Multivariate F-statistics: The F-statistic is derived by essentially dividing the means sum of the square (SS) 
for the source variable by the source variable mean error (ME or MSE).
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## Dataset (for help use: ? iris)
iris

## Subset data 
sepl <- iris$Sepal.Length
petl <- iris$Petal.Length

## Shapiro-Wilk normality test
# Prepare data
iris.t <- t(iris[,c(1,3)])
# Run test 
mshapiro.test(iris.t)

## MANOVA test
res.man <- manova(cbind(Sepal.Length, 
Petal.Length) ~ Species, data = iris)
summary(res.man)
## Which differ?
summary.aov(res.man)
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The methods Holm, Hochberg, Hommel, and Bonferroni control 
the family-wise error rate.  These methods attempt to limit the 
probability of even one false discovery (a type I error, incorrectly 
rejecting the null hypothesis when there is no real effect), and so 
are all relatively strong (conservative).  
  
The methods BH (Benjamini–Hochberg, which is the same as 
FDR in R) and BY control the false discovery rate.  These 
methods attempt to control the expected proportion of false 
discoveries. 



Biocomputing ▷ Statistics

08.03.19 | PSC19 | JCW !80

Data$Bonferroni <- 
      p.adjust(data$raw.p, 
               method = "bonferroni")

Data$BH <- 
      signif(p.adjust(data$Raw.p, 
               method = "BH"), 4)

Data$Holm <- 
      p.adjust(data$raw.p, 
               method = "holm")

Data$Hochberg <- 
      p.adjust(data$raw.p, 
               method = "hochberg")

Data$Hommel <- 
      p.adjust(data$raw.p, 
               method = "hommel")

Data$BY <- 
      signif(p.adjust(data$ raw.p, 
               method = "BY"), 4)
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Bayesian statistics
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Imagine, you would like to predict the outcome of a bicycle race 
between the two cyclists Speedy and Doping. Both adversaries have 
raced against each other before. Doping won 14 times in the last 20 
races.

p(Doping) = 14
20

= 0.7

Based on the information we know Doping has a 30% probability of 
loosing the race and therefore is more likely the winner of the next 
race.

p(Speedy) = 1− 0.7 = 6
20

= 0.3
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Analyzing the previous races in more detail can help to improve the 
probability calculations even further. 

It turns out that Speedy won four of the races when a doping controller 
show up before the race while Doping only won twice. It seems that Speedy 
is doing better in “clean” races.  

Now, how does this extra piece of information affect our prediction? 
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Race

test no-test

Doping 2 12 14

Speedy 4 2 6

20

We could simple focus on the fact that Doping only won twice in clean races and there 
is more likely to lose the next race. The probability would of winning the next race 
would shift from previously 70% to about 33%.

p(Doping) = 2
6
= 0.333

This assumption, however, would ignore the fact that Doping has won more 
competitions in total. 

A better approach would be to combine the two pieces of information and calculate an 
overall probability for Doping to win the next race.
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p(A|B) = p(B|A) p(A) / p(B)

For our bicycle race example this would translate into: 

A - winning the race 

B - test before the race 

p(A) > p(win) - The probability that Doping wins the next race based on winnings.  

p(B) > p(test) - The probability of a doping control before the race. 

p(B|A) > p(test|win) - The probability that there is a doping test and Doping wins it. 

p(A|B) > p(win|test) - The probability that Doping is winning the race  

In probability theory and statistics, the Bayes' theorem describes the 
probability of an event, based on conditions that might be related to the 
event. The probability of finding observation A, given that some piece of 
evidence B is present: 

p(win|test) = p(test|win) p(win) / p(test)
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p(test|win) = 2
6

p(test) = 6
20

p(win) =14
20

test no-test

win 2 12 14

loose 4 2 6

20

p(win|test) = 

2
6
× 14

20
6
20

= 2 ×14 × 20
6 × 20 × 6

= 7
9
= 0.78

p(win|test) = p(test|win) p(win) / p(test)


