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The averaged thickness of 1.2 cm-sections ranged between 150
— 750 um with an overall average of 319 £ 111 um (n = 200). On
large-scale, the biofilm was significantly thicker at the bottom
(386 = 117 pm, n = 100) compared to the top (252 + 44 ym, n =
100) (t-test, p < 0.05).
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Longitudinal distance of hose (cm)

Interestingly, only few dominant taxa made up for the majority
of the community composition. In the top part of the hose, 12
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taxa accounted for 92 % of the total community. A similar

situation was identified for the dominant taxa in the bottom
biofilm, with eleven taxa covering 91 %. Dominant taxa were

similar between top and bottom, with only three out of 23

being different.
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Female: Brain/Antenna

two-fold change

three—fold change

log2(RPKM)
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Calorie intake, olive oil consumption and mammographic
density among Spanish women

Altsuaniq

Nicolas Garcia-Arenzana®?, Eva Maria Navarrete-Munoz™>*, Virginia Lope’*, Pilar Moreo®, Carmen Vidal®,
Soledad Laso-Pablos”'%, Nieves Ascunce®?, Francisco Casanova-Gomez'°, Carmen Sanchez-Contador!?,
Carmen Santamarina'?, Nuria Aragonés’“, Beatriz Pérez Gomez™*, Jests Vioque®* and Marina Pollan®**

Variables OR 95% Cl p!
Calories per 500 Kcals : - 123 110138 <0.001
Proteins per 259 - | 0.89  0.80-1.00 0.042
Carbohydrates per 60g l. 1.02 0.90-1.16 0.384
Fats per 259 - 0.97 0.89-1.10 0.696
Dairy products per 2009 —— 1.00 0.94-1.06 0.940
> Whole milk per 200g | - 110  1.00-1.20 0.039
Semi-skimmed milk per 2000 e 1.00  0.94-1.06 0.942
Skimmed milk per 200g N 0.96  0.90-1.03 0.222
Eggs per 159 i P 1.04  0.97-1.11 0.275
Total meat per 30g _+_ 1.00  0.951.06 0.975
Red meat per 309 —— 1.04 0.98-1.10 0.251
>wrme meat per 30g - ‘ 0.89  0.80-1.00 0.041
Processed meat per 209 el — 1.00 0.94-1.07 0.986
Blue fish per 25¢g — 0.96 0.89-1.04 0.340
White fish per 25g P I — 1.05  0.97-1.13 0.205
Vegetables per 150g —r—r 0.95  0.88-1.03 0.216
Fruit per 250g S 0.96  0.89-1.03 0.269
Nuts per 109 | 1.06 1.00-1.13 0.060
Legumes per 259 —I-o— 1.03 0.96-1.11 0.341
Cereals and pasta per 50g T - 1.08 0.99-1.18 0.074
Potatoes per 30g —to— 1.02  0.96-1.08 0.569
Sweets per 309 _P_ 1.01 0.94-1.09 0.762
Bread per 659 — - 0.98 0.91-1.05 0.594
P> Oiive oil per 229 . | 0.86  0.76-0.96 0.008
Butter per 1.5¢ e s 1.05 0.97-1.14 0.212

1} Ll T L)

1
0.6 0.7 0.8 0.9 1 11 12 13 14
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Robert R. Sokal and F. James Rohlf

Introduction to w
Biostatistics

S THE R BOOK

MICHAEL J CRAWLEY

F)WILEY
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Probability Distributions

Binomial / Normal / Poisson
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Normal Distribution

X ~N(u,0%)

0.40
0.351
>
‘' 0.30-
3
N 0.25-
>
= 0.201

©0.151 |
o U: mean (also median and mode)

o
2 0.10- .
Q- O: standard deviation

13.59% | 34.13% | 34.13% | 13.59% \ 2.14% 0.13%

0.05 1 0.13% 2.14%
0.00

0°: variance

,u—'40 u—'30 ,u—'20 Uu—o U u+o ,u+'20 ,u+'3o ,u+'40
The normal distribution is one of the most important

and most widely used distribution in statistics. It is
sometimes called the "bell curve”.
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> Statistics

Why does it matter?

Parametric statistics is a branch of statistics which
assumes that sample data comes from a population that
follows a probability distribution based on a fixed set of
parameters. Most well-known elementary statistical
methods (e.g. t-test, anova) are parametric.

Checking the distribution of your data and the
assumptions of the statistical test is the first step of the

analysis!!
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Question: Are the two groups significantly different in the number
of flowers they produce?

Group A Group B

20

20

15
|

15

10
|

10
Frequency

Number of flowers

Number of flowers

1=4.03 1=2.90
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T-test (parametric)

[J The data is collected from a representative,
randomly selected portion of the total population.

[] The data follow a normal distribution.
[J] A reasonably large sample size is used (N > 30).

[[] Homogeneity of variance.
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Test of normality

Shapiro test: The null-hypothesis of this test is that the
population is normally distributed. Thus, on the one hand, it
the p-value is less than the chosen alpha level, then the null

hypothesis is rejected and there is evidence that the data
tested are not normally distributed.

R > shapiro.test(groupA)
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Group A

20

15

10

Number of flowers

P—value=0.34 (n.s.)

Frequenc

Group B

20

15
1

10
|

Number of flowers

P—value=0.27 (n.s.)

P-value > 0.05 — the data of both samples does not deviate from a

normal distribution.
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Homogeneity of variance

Bartlett’'s test: In statistics, Bartlett's test is used to test if
k samples are from populations with equal variances.

Bartlett's test is sensitive to departures from normality.
Levene's test and the Brown—Forsythe test are alternatives
to the Bartlett test that are less sensitive to departures
from normality.

R > barlett.test(groupA, groupB)

GOC

N m L~ (]

AjTsuant
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https://en.wikipedia.org/wiki/Levene%27s_test
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Group A Group B

20
|
20

15
|

Frequency
10
|
Frequency
10
|

Number of flowers Number of flowers

P—value=0.078 (n.s.)

Bartlett’s test is used to test the null hypothesis, Ho that all k population variances are
equal against the alternative that at least two are different.
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T-test (parametric)

[ The data is collected from a representative,
randomly selected portion of the total population.

[ The data follow a normal distribution.
4] A reasonably large sample size is used (N > 30).

M Homogeneity of variance.
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Question: Are the two Groups significantly different in the number
of tlowers they produce?

t.test(groupA, groupB, var.equal = TRUE)

t = 4.3915, df = 98, p-value = 2.848e-05

95 percent confidence interval:
0.6198587 1.6419286

mean in group A mean in group B
4.033558 2.902665

Answer: The two Groups are significantly different in the
number of flowers they produce.
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> Statistics GOC

t value

The calculations behind t-values compare your sample mean(s) to the null
hypothesis and incorporates both the sample size and the variability in the
data. A t-value of O indicates that the sample results exactly equal the null
hypothesis. As the difference between the sample data and the null
hypothesis increases, the absolute value of the t-value increases.
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Question: Are the three groups significantly different in the number
of flowers they produce?

Group A Group C

15 20
|

Frequency
10
|

I 1 T 1 T T 1
1 2 3 4 5 6 7 4 5 6 7 8 9 10 1

Number of flowers

u="7.71

Number of flowers

u=4.03
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t-value

The calculations behind t-values compare your sample mean(s) to the null
hypothesis and incorporates both the sample size and the variability in the
data. A t-value of O indicates that the sample results exactly equal the null
hypothesis. As the difference between the sample data and the null
hypothesis increases, the absolute value of the t-value increases.

t.test(groupA, groupB) t.test(groupC, groupA)
t = -4.3915, df = 98, t = 14.9, df = 98, p-
p-value = 2.848e-05 value < 2.2e-16

mean of x mean of y mean of x mean of y

2.902665 4.033558 7.710984 4.033558
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Table entries are values of 7 corresponding to proportions in one tail or in two tails combined.
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One ftail Two tails
(either right or left) combined

t.test(groupA, groupB)

Proportion in One Tail
0.25 0.10 0.05 0.025 0.01 0.005
Proportion in Two Tails Combined
df 0.50 0.20 0.10 0.05 0.02 0.01 T — 3 9 d f = 9 8
t 4.3915, ,
1 1.000 3.078 6.314 12.706 31.821 63.657
2 0.816 1.886 2.920 4.303 6.965 9.925 - = 8 8 - O
3 0.765 1.638 2.353 3.182 4.541 5.841 p va lue 2 ° 4 e 5
4 0.741 1.533 2.132 2.776 3.747 4.604
5 0.727 1.476 2.015 2.571 3.365 4.032
6 0.718 1.440 1.943 2.447 3.143 3.707
7 0.711 1415 1.895 2.365 2.998 3.499
8 0.706 1.397 1.860 2,306 2.896 3.355 mean of x mean of Y
9 0.703 1.383 1.833 2.262 2.821 3.250
10 0.700 1.372 1.812 2.228 2.764 3.169 9 O 6 6 O 3 3 8
11 0.697 1.363 1.796 2.201 2718 3.106 2 O 2 5 4 C 5 5
12 0.695 1.356 1.782 2.179 2.681 3.055
13 0.694 1.350 1.771 2.160 2.650 3.012
14 0.692 1.345 1.761 2.145 2.624 2977
15 0.691 1.341 1.753 2.131 2.602 2.947
16 0.690 1.337 1.746 2.120 2.583 2.921
17 0.689 1333 1.740 2.110 2.567 2.898 t . teSt ( groupc ’ groupA)
18 0.688 1.330 1.734 2.101 2.552 2.878
19 0.688 1.328 1.729 2.093 2.539 2.861
18 0.688 1.330 1.734 2.101 2.552 2.878
19 0.688 1.328 1.729 2.093 2.539 2.861
20 0.687 1325 1.725 2.086 2.528 2.845 t — 1 4 9 d f — 9 8 p -
21 0.686 1.323 1.721 2.080 2,518 2.831 ® 4 4
22 0.686 1.321 1.717 2.074 2.508 2.819
23 0.685 1319 1.714 2.069 2.500 2.807 Value < 2 . 2 e-— ]_ 6
24 0.685 1318 1711 2.064 2.492 2.797
25 0.684 1316 1.708 2.060 2.485 2.787
26 0.684 1.315 1.706 2.056 2.479 2.779
27 0.684 1314 1.703 2.052 2.473 2.771
28 0.683 1313 1.701 2.048 2.467 2.763 f f
29 0.683 1311 1.699 2.045 2.462 2.756 mean o X Imean o Y
30 0.683 1.310 1.697 2.042 2.457 2.750
40 0.681 1.303 1.684 2.021 2.423 2.704 7.710984 4.033558
60 0.679 1.296 1.671 2.000 2.390 2.660
120 0.677 1.289 1.658 1.980 2.358 2.617
% 0.674 1.282 1.645 1.960 2.326 2.576
Table III of R. A. Fisher and F. Yates, Statistical Tables for Biological, Agricultural and Medical Research, 6th ed. London: Longman Group Ltd.,
1974 (previously published by Oliver and Boyd Ltd., Edinburgh). Adapted and reprinted with permission of the Addison Wesley Longman

Publishing Co. 08.03.19 | PSC1 9 | JCW
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Important to remember!

We noted previously that one of the assumptions for the t-test is
that the variances of the two samples are equal. However, a
modification of the t-test known as Welch's test is said to correct
for this problem by estimating the variances, and adjusting the
degrees of freedom to use in the test.

TRUE ) R

t.test(sampleA, SampleB, var.equal =

## Default S3 method:

t.test(x, y = NULL,
alternative = c("two.sided", "less", "greater'"),

mu = 0, paired FALSE, var.equal = FALSE,
conf.level = 0.95, ...)

08.03.19 | PSC19 | JCW
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Important to remember!

t.test(groupB, groupA, var.equal = FALSE)
t = -4.3915, df = 92.284, p-value = 2.996e-05

t.test(groupB, groupA, var.equal = TRUE)
t = -4.3915, df = 98, p-value = 2.848e-05
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Important to remember!

It you want to measure a trait before and after treatment (eg.
effect of nutrient on plant growth), you need to used a paired
sample T-test since the measurements are not independent.

t.test(sampleA, SampleB, paired = TRUE)

## Default S3 method:

t.test(x, y = NULL,
alternative = c("two.sided", "less", "greater"),

mu = 0, paired = FALSE, var.equal = FALSE,
conf.level = 0.95, ...)

08.03.19 | PSC19 | JCW



> Statistics GOC

ystunz
3J3u3d)
A3Tsuaniq
>133usy

Important to remember!

t.test(groupB, groupA, paired = FALSE)
t = -4.3915, df = 92.284, p-value = 2.996e-05

t.test(groupB, groupA, paired = TRUE)
t = -4.6764, df = 49, p-value = 2.324e-05

08.03.19 | PSC19 | JCW
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What is the degree of freedom (df)?
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degree of freedom

The t.test( ) function produces a variety of t-tests. Unlike most
statistical packages, the default assumes unequal variance and

applies the Welsh df modification.

t.test(groupA, groupB, var.equal = FALSE)
t.test(groupA, groupB, var.equal = TRUE)
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degree of freedom

general definition - the number of independently variable factors affecting

the range of states in which a system may exist.

in statistics - the number of independent values or quantities that can be

assigned to a statistical distribution.

08.03.19 | PSC19 | JCW
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N m o ()]

Ajtsuant

- blueberry

5 choices of flavours

08.03.19 | PSC19 | JCW



> Statistics GDC

N m o ()]

Ajtsuant

*

5 choices of flavours

but the freedom of choosing a flavour is 4
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MORE

THINGS
CONSIDERED
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One Sample t-Test

The One Sample t-Test determines whether the sample mean is
statistically different from a known or hypothesised population mean.

_x-p

S_

X

S
! where s. = —=
Jn

sample <- 1:9 R

mean(sample)
t.test(sample, mu=5, conf.level = 0.95)

# or
sample <- (rnorm(1000, mean = 0, sd = 0.5))

t.test(sample, mu = 0, conf.level = 0.95)
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S O O 5 O 5 9 S
/3 8 2 9 1 5 S
T 1 1 1 1 1 41 S

S 5 S
6 4 S
T 1 1

For a one-sample t-test, one degree of freedom is spent estimating the
mean, and the remaining n - 1 degrees of freedom estimate variability.
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A chi-square test of independence is used to determine whether two

categorical variables are dependent.

B1

B2

Chi-Square Test of Independence

Al A2

6 | 4 |10
8 | 6|14
14 10 24

Al A2
B1| 6 10
B2 14
14 10 24
d.f. = 1

GOC

N m L~ (]

AjTsuant

08.03.19 | PSC19 | JCW



> Statistics GOC

N M o ()]

AjTsuant

Chi-Square Test of Independence

A1l A2 A3
B1 20
B2 20
B3 20
20 30 10 60

How much freedom is there in a 3x3 table?

08.03.19 | PSC19 | JCW
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Chi-Square Test of Independence

A1 A2 A3 A1l A2 A3 A1 A2 A3
B1|10| O 10|20 B1| 5|0 |15|20 B1 20
B2| 5|5 (10|20 B2|10|10| O |20 B2 20
B3| 5|5 (10|20 B3| 5|0 |15|20 B3 20

20 10 30 60 20 10 30 60 20 10 30 60
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Chi-Square Test of Independence

A1 A2 A3 A1 A2 A3 A1 A2 A3
B1|10| O | 10|20 B1{10| 0 | 10|20 B1{10| O | 10|20
B2| 5|5 1020 B2| 5|5 1020 B2 5|5 1020
B3| 5|5 (10|20 B3| 5|5 (10|20 B3| 5|5 1020

20 10 30 60 20 10 30 60 20 10 30 60
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Chi-Square Test of Independence

B

B2

B3

B4

How much freedom is there in a 4x6 table?

Al A2 A3 A4 Ab

23 35 33 44 o0

60

40

32

57

GOC

N M o ()]

AjTsuant
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B

B2

B3

B4

d.f. = (r-1)(c-1)=12

AT

> Statistics

A2 A3 A4 Ab

12

14

3

17

20

5

$

10

S

13

5

8

9

S

4

1

v

11

15

23

23 35 33 44

60

Chi-Square Test of Independence

60

40

32

57

N I8 = )
c ) - ]
R =) < >
I ot 1) 1]
n 3 3 ot
> (] 7] (=]
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Testing Hardy-Weinberg

One approach to testing the hypothesis that genotypes are in Hardy-Weinberg

proportions is the X2 for goodness of fit between observed and predicted

genotype (or phenotype) frequencies.

We have to know how many degrees of freedom are associated with the test.

08.03.19 | PSC19 | JCW
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How many degrees of freedom does a chi square test have? Normally, the degrees of freedom are equal
to the number of observations minus 1. However, this is not true for testing the Hardy-Weinberg
equilibrium. Instead, you have to think about how many quantities are really free to vary. Remember that
we used the population to estimate p and g, then we used p and g to get p2, 2pg, and g2. Once we

decided on a value for p, everything else was decided for us. Whatever p was, g had to be 1-p, and p2,

2pq, and g2 were set as well.

08.03.19 | PSC19 | JCW
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A1 A2 A3

25 10 20 55

GOC

N m o ()]

Ajtsuant
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A1 A2 A3

25 10 20 55

AT
A2
A3

A1 A2 A3

10 29

S 10

.10 20

25 10 20 55

GOC

N m o ()]

Ajtsuant
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A1 A2 A3

25 10 20 55

A1 A2 A3

GOC

N m o ()]

Ajtsuant
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A1 A2 A3

25 10 20 55

A1 A2 A3

AT
A2
A3

29
10
20
25 10 20 55

AT
A2
A3

GOC

N m o ()]

Ajtsuant

A1 A2 A3

10 29

S 10

.10 20

25 10 20 55
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A1 A2 A3

25 10 20 55

A1 A2 A3

AT
A2
A3

25
10
20
25 10 20 55

48

AT
A2
A3

GOC

N m o ()]

Ajtsuant

A1 A2 A3 A1 A2 A3
AT 25 AT 29
A2 10 A2 10
A3 20 A3 20
25 10 20 55 25 10 20 55
A1 A2 A3 A1 A2 A3 A1 A2 A3
25 AT 25 AT 25
10 A2 10 A2 10
20 A3 20 A3 20
25 10 20 55 25 10 20 55 25 10 20 55

df.=3
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Number of alleles: 3

n(n+1)
2

Number of genotypes: 6

Genotypes =

d.f.=#genotypes —#alleles

Degree of freedom: 3

N I8 = )
c ) - ]
R =) < >
B ot ] D
n 3 3 ot
=2 m (7] [

- N
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Number of alleles: 4

nn+1)
2

Number of genotypes: 10

Genotypes =

d.f.=#genotypes —#alleles

Degree of freedom: 6

N I8 = )
c ) - ]
R =) < >
. ot 1) 1]
n 3 3 ot
> (] 7] (=]

- N
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Non-parametric test

The Mann-Whitney U test (also called the Mann-Whitney-Wilcoxon, Wilcoxon
rank-sum test, or Wilcoxon—-Mann-Whitney test) is a nonparametric test of the
null hypothesis that it is equally likely that a randomly selected value from one
sample will be less than or greater than a randomly selected value from a second
sample. Unlike the t-test it does not require the assumption of normal
distributions.

wlilcoxon.test(groupA, groupB, paired = FLASE)
wilcoxon.test(groupA, groupB, paired = TRUE) R
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Question: Are the three groups significantly different in the number T ET
of flowers they produce?
Group A Group B Group C

20
20

20

15
15

15

10
10

10
Frequency

|
0 1 2 3 4 5 6 4 5 6 7 8 9 10 1"

Number of flowers Number of flowers

u=2.90 u="7.71
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N m o (0]
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Anova (parametric)

[ The data is collected from a representative,
randomly selected portion of the total population.

[] The data follow a normal distribution (or the
residuals of the model are normally distributed)

[J A reasonably large sample size is used (N > 20).

[[] Homogeneity of variance.
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Normality of the residuals (or errors)

Xi3
X23
15 Ix33 (83=mean group 3)
v x,, (€41 Yij = m+aj+ej;
10 % i‘(\zz-(é------)- (m=grand mean)
11 o _
X21(a) ij y43—m+a3+€3’4
5 x31 1
X

The equation indicates that the jth data value, from level i, is the sum of
three components: the common value (grand mean), the level effect (the

deviation of each level (or group) mean from the grand mean), and the
residual (what's left over).
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Normality of the residuals (or errors)

value group
anova model <- aov(data$Svalue ~ data$group)

2.662924 A

3.861776 A shapiro.test(residuals(anova model))
3.874668 A

3.601635 A data: residuals(anova model)

1.440844 Ay = 0.99153, p-value = 0.5128
2.065737 A

P-value > 0.05 = The residuals of the anova model do not deviate from a

normal distribution.
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Ajtsuant

Homogeneity of variance

Performs Bartlett's test of the null that the variances in
each of the groups (samples) are the same.

‘R

bartlett.test(dataSvalue ~ dataSgroup)
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Homogeneity of variance

Group A

10

Group B

Number of flowers

Bartlett's K-squared =

3.216, df

Frequency

2, p-value =

GOC

N Ia = (0
c ] . ]
R > < >
- ot ] ]
n R 35 ot
> m (7] e
(=0 N
ot
<
wn
o 4
O -
.1 [ ]
r T T T T T 1
4 5 6 7 8 9 10 "

0.20
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N m o (0]
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Anova (parametric)

[ The data is collected from a representative,
randomly selected portion of the total population.

M The data follow a normal distribution (or the
residuals of the model are normally distributed)

] A reasonably large sample size is used (N > 20).

M Homogeneity of variance.
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Analysis of variance (ANOVA) is used to analyze the differences
among group means in a sample. In its simplest form, ANOVA
provides a statistical test of whether the population means of
several groups are equal, and therefore generalizes the t-test to
more than two groups.

anova model <- aov(value ~ group, data = data) R
summary (anova model)

Df Sum Sq Mean Sq F value Pr(>F)
group 2 632.0 316.02 185.3 <2e-16 ***
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At this point, it is important to realize that the ANOVA cannot tell
you which specific group(s) were statistically significantly different
from each other, only that at least two groups were.

To determine which groups differed from each other, you need to use
a post hoc test (e.g. Tukey's range test).
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Tukey's range test, also known as the Tukey's test, Tukey method, Tukey's honest
significance test, or Tukey's HSD is a single-step multiple comparison procedure
and statistical test.

It can be used on raw data or in conjunction with an ANOVA (post-hoc analysis) to
find means that are significantly different from each other.

TukeyHSD (anova model) R

Sgroup

diff lwr upr p adj
B-A -1.130894 -1.749297 -0.5124904 8.12e-05
C-A 3.677426 3.059023 4.2958293 0.00e+00
C-B 4.808320 4.189916 5.4267229 0.00e+00

Groups A and B are not significantly different
Group C is significantly different from A and B
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Non-parametric test

The Kruskal-Wallis test or one-way ANOVA on ranks is a non-parametric
method for testing whether samples originate from the same distribution. It is
used for comparing two or more independent samples of equal or different
sample sizes. It extends the Mann-Whitney U test, which is used for
comparing only two groups.

kruskal model <- kruskal.test(value ~ group, data = data) R

data: wvalue by group
Kruskal-Wallis chi-squared = 100.19, df = 2, p-value < 2.2e-16
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> Statistics GOC

Did you know that barplot are not he only way to visualise your data?

Standard Deviation (SD)
Mean

Number of flowers

0.0~

group
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What about using boxplots instead?

O == Qutlier

W Maximum

g <= 3" Quartile
=

4

2

£

m -

§. 4= Median

@

= <= 1%t Quartile

A= Minimum
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> Statistics

Boxplot

Group

You can confirm visually the
results of the ANOVA:

* Group A and B notches overlap

* Group C and A/B notches do
not overleap
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Violin Plot

95% confidence interval

200

Interquartile range

Median

100
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Violin Plot

e 2]
'

Violin plots are similar to box
plots, except that they also show
the probability density of the data
at different values.

Number of flowers

Violin plots are especially
informative for large dataset.

group
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Multiple Comparisons
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The problem - When you perform a large number of statistical tests, some will have

P-values less than 0.05 purely by chance, even it all your null hypotheses are true.
The Bonferroni correction is one simple way to take this into account. Adjusting the

false discovery rate using the Benjamini-Hochberg procedure is a more powerful

method.

AB

library(HardyWeinbergq) @

n <- 1000 # sample size

m <- 1000 # number of markers

out <- HWData(n,m) # create a random data set

HWTernaryPlot(out, 1000, region=1,
hwcurve=TRUE, vbounds=FALSE, vertex.cex=2)

AA BB

08.03.19 | PSC19 | JCW



Biocomputing [> Statistics GOC

/70

ys>31uny
3J3u3d)
Altsuaniq
>133usy

The problem of multiple comparisons (multiple statistical tests) has received
increasing attention in the last few years. This is important for such techniques as the
use of RNASeq quantities or evolutionary genomics, where the sequences of every
gene in the genome of two or more species can be compared. There is no
universally accepted approach for dealing with the problem; it is an area of active

research.

The classic approach to the multiple comparison problem is to control for the error
rate. Instead of setting the critical P level for significance to e.g. 0.05, you use a
adjusted lower threshold. The most common adjustment method is the Bonferroni
correction. The idea is simple, if you are doing 100 statistical tests, the critical value
for an individual test would be 0.05/100 = 0.0005, and you would only consider
individual tests with P-vlaues < 0.0005 (instead of 0.05) to be significant.
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Number of flowers

> Statistics

w
]

Group

P-value: 0.05
Bonferroni adjusted P-value: 0.05/3 = 0.0167

GOC

ystdnz
3J3u3d)
Altsuaniq

R

t.test(groupB, groupA, var.equal

TRUE )

t = -4.3915, df = 98, p-value = 2.848e-05

t.test(groupC, groupA, var.equal = TRUE)

t = 14.9, df = 98, p-value < 2.2e-16

t.test(groupB, groupA, var.equal = TRUE)

t =17.281, df = 98, p-value < 2.2e-16

>133ud9
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The Bonferroni correction is appropriate when a single false positive in a set of tests
would be a problem. It is mainly useful when there are a fairly small number of
multiple comparisons and you're looking for one or two that might be significant.
However, if you have a large number of multiple comparisons and you're looking for
many that might be significant, the Bonferroni correction may lead to a very high

rate of false negatives.
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> Statistics

Calorie intake, olive oil consumption and mammographic
density among Spanish women

Nicolas Garcia-Arenzana’?, Eva Maria Navarrete-Munoz>*, Virginia Lope*“, Pilar Moreo®, Carmen Vidal®,
Soledad Laso-Pablos”*®, Nieves Ascunce®?, Francisco Casanova-Gomez'?, Carmen Sanchez-Contador'?,
Carmen Santamarina'?, Nuria Aragonés’*, Beatriz Pérez Gomez"*, Jesis Vioque”* and Marina Pollan®*

GOC
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One good technique for controlling the false
discovery rate was briefly mentioned by Simes (1986)
and developed in detail by Benjamini and
Hochberg (1995). Put the individual P values in
order, from smallest to largest. The smallest P value
has a rank of i=1, then next smallest has i=2, etc.
Compare each individual P value to its Benjamini-
Hochberg critical value, (i/m)Q, where i is the rank, m
is the total number of tests, and Q is the false
discovery rate you choose. The largest P value that
has P<(i/m)Q is significant, and all of the P values
smaller than it are also significant, even the ones that
aren't less than their Benjamini-Hochberg critical

Dietary variable Pvalue Rank (i/m)Q

Total calories <0.001 1 0.010

Olive oil 0.008 2 0.020

Whole milk 0.039 3 0.030

White meat 0.041 4 0.040

Proteins 0.042 5 0.050

Nuts 0.060 6 0.060

Cereals and pasta 0.074 7 0.070

White fish 0.205 8 0.080

Butter 0.212 9 0.090

Vegetables 0.216 10 0.100

Skimmed milk 0.222 11 0.110

Red meat 0.251 12 0.120

Fruit 0.269 13 0.130

Eggs 0.275 14 0.140

Blue fish 0.34 15 0.150

Legumes 0.341 16 0.160

Carbohydrates 0.384 17 0.170

Potatoes 0.569 18 0.180

Bread 0.594 19 0.190

Fats 0.696 20 0.200

Sweets 0.762 21 0.210

Dairy products 0.94 22 0.220
Semi-skimmed milk 0.942 23 0.230 value.

Total meat 0.975 24 0.240

Processed meat 0.986 25 0.250

Sources: Mc Donald (2014) Handbook of Biological Statistics

Mangiafico (2015) An R Companion for the Handbook of Biological Statistics
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Calorie intake, olive oil consumption and mammographic

density among Spanish women

Nicolas Garcia-Arenzana®?, Eva Maria Navarrete-Munoz™>*, Virginia Lope’*, Pilar Moreo®, Carmen Vidal®,
Soledad Laso-Pablos”®, Nieves Ascunce®?, Francisco Casanova-Gomez'?, Carmen Sanchez-Contador?,
Carmen Santamarina'?, Nuria Aragonés’*, Beatriz Pérez Gomez"*, Jesis Vioque”* and Marina Pollan®*

Variables OR 95% Cl p!
Calories per 500 Kcals - 1.23 1.10-1.38 <0.001

|
Proteins per 259 - I 0.89 0.80-1.00 0.042
Carbohydrates per 60g l. 1.02 0.90-1.16 0.384
Dairy products per 2009 —— 1.00 0.94-1.06 0.940
Whole milk per 200g - - 1.10 1.00-1.20 0.039
Semi-skimmed milk per 2000  ceh— 1.00  0.94-1.06 0.942
Skimmed milk per 200g NN 0.96  0.90-1.03 0.222
Eggs per 159 _|_._ 1.04 0.97-1.11 0.275
Total meat per 30g _+_ 1.00 0.95-1.06 0.975
Red meat per 30 1.04 0.98-1.10 0.251
White meat per 30g - ‘ 0.89 0.80-1.00 0.041
Processed meat per 20g —— 1.00 0.94-1.07 0.986
Blue fish per 259 —_— 0.96 0.89-1.04 0.340
White fish per 25¢ D TP — 1.05 0.97-1.13 0.205
Vegetables per 1509 b 0.95  0.88-1.03 0.216
Fruit per 250g S I 0.96  0.89-1.03 0.269
Nuts per 10g IL-— 1.06  1.00-1.13 0.060
Legumes per 259 —l-.— 1.03 0.96-1.11 0.341
Cereals and pasta per 509 -l—o— 1.08 0.99-1.18 0.074
Potatoes per 30g —r'— 1.02 0.96-1.08 0.569
Sweets per 309 e 1.01 0.94-1.09 0.762
Bread per 659 — 0.98 0.91-1.05 0.594
Olive oil per 229 - | 0.86 0.76-0.96 0.008
Butter per 1.5¢ T [ 1.05 0.97-1.14 0.212

r T T T

|
0.6 0.7 0.8 0.9 1 11 12 13 14

<0.001
0.050
1.000
1.000
1.000
0.042
1.000
0.370
0.573
1.000
0.449
0.047
1.000
0.772
0.285
0.338
0.518
0.075
0.853
0.098
1.000
1.000
1.000
0.009
0.312

GOC

ystdnz
3J3u3d)
Altsuaniq
>133usy

08.03.19 | PSC19 | JCW



Biocomputing [> Statistics GOC

ys>31uny
3J3u3d)
Altsuaniq
>133usy

The Bonferroni correction and Benjamini-Hochberg procedure
assume that the individual tests are independent of each other.
That might not be the case and to account for this you might
consider multivariate analysis of variance (manova).

Reiner, A., D. Yekutieli and Y. Benjamini. 2003. Identifying differentially expressed genes using
false discovery rate controlling procedures. Bioinformatics 19: 368-375.
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Independent Random Sampling: MANOVA assumes that the observations
are independent of one another, there is not any pattern for the selection of
the sample, and that the sample is completely random.

Level and Measurement of the Variables: MANOVA assumes that the
independent variables are categorical and the dependent variables are
continuous or scale variables.

Absence of multicollinearity: The dependent variables cannot be too
correlated to each other.

Normality: Multivariate normality (Shapiro-Wilk test) is present in the data.

Homogeneity of Variance: Variance between groups is equal.
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Levene’s Test of Equality of Variance: Used to examine whether or not the variance between independent
variable groups are equal; also known as homogeneity of variance Non-significant values of Levene’s test

indicate equal variance between groups.

Box's M Test: Used to know the equality of covariance between the groups. This is the equivalent of a
multivariate homogeneity of variance. Usually, significance for this test is determined at & = .001 because

this test is considered highly sensitive.

Partial eta square: Partial eta square (n2) shows how much variance is explained by the independent
variable. It is used as the effect size for the MANOVA model.

Post hoc test: If there is a significant difference between groups, then post hoc tests are performed to
determine where the significant differences lie (i.e., which specific independent variable level significantly

differs from another).

Multivariate F-statistics: The F-statistic is derived by essentially dividing the means sum of the square (SS)
for the source variable by the source variable mean error (ME or MSE).
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> Statistics

## Dataset (for help use: ? iris)
iris

## Subset data
sepl <- irisS$Sepal.Length
petl <- irisS$SPetal.Length

## Shapiro-Wilk normality test
# Prepare data

iris.t <- t(iris[,c(1,3)])

# Run test
mshapiro.test(iris.t)

## MANOVA test

res.man <- manova(cbind(Sepal.Length,
Petal.Length) ~ Species, data = iris)

summary(res.man)
## Which differ?
summary.aov(res.man)

GOC

ystdny
3J3ua)
A3Tsuaniq
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The methods Holm, Hochberg, Hommel, and Bonferroni control
the family-wise error rate. These methods attempt to limit the

probability of even one false

discovery (a type | error, incorrectly

rejecting the null hypothesis when there is no real effect), and so
are all relatively strong (conservative).

The methods BH (Benjamini—

Hochberg, which is the same as

FDR in R) and BY control the false discovery rate. These

methods attempt to control t
discoveries.

ne expected proportion of false
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> Statistics

Data$Bonferroni <-
p.adjust(datasraw.p,

method = "bonferroni')
Data$SBH <-
signif(p.adjust(dataSRaw.p,
method = "BH"), 4)

DataSHolm <-
p.adjust(dataS$Sraw.p,
method = "holm")

DataSHochberg <-
p.adjust(dataSraw.p,
method = "hochberg")

DataSHommel <-
p.adjust(dataSraw.p,

method = "hommel")
DataSBY <-
signif(p.adjust(data$ raw.p,
method = "BY"), 4)

GOC
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Bayeslan statistics

The Posterior The Evidence The Prior

The probability of The probability of H
getting this evidence if being true, before
this hypothesis were true ~ gathering evidence

P (H|E) P(H)
P(E)

P(H|E) =

The probability that the
hypothesis (H) is true The marginal probability of the evi-
given the evidence (E) dence (Prob of E over all possibilities)

08.03.19 | PSC19 | JCW



82

> Statistics

Imagine, you would like to predict the outcome ot a bicycle race
between the two cyclists Speedy and Doping. Both adversaries have
raced against each other before. Doping won 14 times in the last 20
races.

14 6
Doping)=—=0.7 Speedy)=1—-0.7T=—=0.3
p(Doping) >0 p(Speedy) ™

Based on the information we know Doping has a 30% probability of
loosing the race and therefore is more likely the winner of the next
race.

GOC

N m o ()]

Ajtsuant
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Analyzing the previous races in more detail can help to improve the
probability calculations even further.

It turns out that Speedy won four of the races when a doping controller

show up before the race while Doping only won twice. It seems that Speedy
is doing better in “clean” races.

Now, how does this extra piece of information affect our prediction?

83
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We could simple focus on the fact that Doping only won twice in clean races and there
is more likely to lose the next race. The probability would of winning the next race

would shift from previously 70% to about 33%.

2
p(Doping) = P =0.333

This assumption, however, would ignore the fact that Doping has won more

competitions in total.

Race
test no-test

Doping 2 12 14
Speedy 4 2 6
20

A better approach would be to combine the two pieces of information and calculate an

overall probability for Doping to win the next race.
08.03.19 | PSC19 | JCW
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In probability theory and statistics, the Bayes' theorem describes the
probability of an event, based on conditions that might be related to the
event. The probability of finding observation A, given that some piece of
evidence B is present:

p(AIB) = p(BIA) p(A) / p(B)

For our bicycle race example this would translate into:

p(winltest) = p(testlwin) p(win) / p(test)

A - winning the race
B - test before the race
p(A) > p(win) - The probability that Doping wins the next race based on winnings.

p(B) > p(test) - The probability of a doping control before the race.
p(BIA) > p(testlwin) - The probability that there is a doping test and Doping wins it.
p(AIB) > p(winltest) - The probability that Doping is winning the race
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p(winltest) = p(testlwin) p(win) / p(test)

test no-test

N m o (N}
C m =L m
3 3 < >
Ly cr m m
n 3 3 ot
> 1] (7] =

2 14 6 win 2 12
testlwin) =— win) =— test) =—
p( ) . p(win) >0 p(test) 0

loose 4 2

14
6

2 14
67%90 2x14x20 7

= = —=0.78
6 6x20x6 9

20

p(winltest) =

20
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